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Much has been published in the past 20 years on the use of 
measurements of arterial stiffness in animal and human 

research studies. This summary statement was commissioned 
by the American Heart Association to address issues concern-
ing the nomenclature, methodologies, utility, limitations, and 
gaps in knowledge in this rapidly evolving field. The follow-
ing represents an executive version of the larger online-only 
Data Supplement and is intended to give the reader a sense 
of why arterial stiffness is important, how it is measured, the 
situations in which it has been useful, its limitations, and ques-
tions that remain to be addressed in this field. Throughout the 
document, pulse-wave velocity (PWV; measured in meters per 
second) and variations such as carotid-femoral PWV (cfPWV; 
measured in meters per second) are used. PWV without modi-
fication is used in the general sense of arterial stiffness. The 
addition of lowercase modifiers such as “cf” is used when 
speaking of specific segments of the arterial circulation.

The ability to measure arterial stiffness has been present 
for many years, but the measurement was invasive in the early 
times. The improvement in technologies to enable repeated, 
minimal-risk, reproducible measures of this aspect of circula-
tory physiology led to its incorporation into longitudinal cohort 
studies spanning a variety of clinical populations, including 
those at extreme cardiovascular risk (patients on dialysis), 
those with comorbidities such as diabetes mellitus (DM) and 
hypertension, healthy elders, and general populations.

In the ≈3 decades of clinical use of PWV measures in 
humans, we have learned much about the importance of this 
parameter. PWV has proven to have independent predictive 
utility when evaluated in conjunction with standard risk factors 
for death and cardiovascular disease (CVD). However, the field 
of arterial stiffness investigation, which has exploded over the 
past 20 years, has proliferated without logistical guidance for 
clinical and translational research investigators. This summary 
statement, commissioned by the American Heart Association 
Council on Hypertension, represents an effort to provide such 
guidance, drawing on the expertise of experienced clinical and 
basic science investigators in Europe, Australia, and the United 
States. Recommendations made in this statement are assumed 
to refer to the research aspect of arterial stiffness investiga-
tions, unless accompanied by language that emphasizes clini-
cal use as well, and are based on the grid shown in Table 1.

Section 1. What Is Arterial Stiffness?
Recommendation
1.1.    �It is reasonable to measure arterial stiffness clinically 

by determining PWV (Class IIa; Level of Evidence A).1

Arterial stiffness is a concept that refers to the material prop-
erties of the arterial wall, which in turn has functional conse-
quences for the artery because it affects the manner in which 
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pressure, blood flow, and arterial diameter change with each 
heartbeat. In addition to the passive mechanical properties of 
the load-bearing structures, arterial stiffness can be modu-
lated by functional components related to cellular processes 
in which wall stiffness can be affected by endothelial function 
through modulation of smooth muscle tone or by alterations in 
the integrity of the extracellular matrix. As developed in this 
summary statement, stiffness is measured in different kinds 
of arteries (muscular, elastic) and in cross section, longitu-
dinally along the vessel, or in both directions. Often, arterial 
stiffness is assessed as the velocity of pulse-wave travel in a 
defined segment such as the aorta. However, the research ques-
tions addressed by investigations of arterial stiffness are not 

restricted to this use, and stiffness has been measured in most 
named large arteries in humans.2 Arterial stiffness is also esti-
mated by measuring pressure or diameter in a vessel and apply-
ing 1 or several of the now extensive formulas to the data to 
derive a value that reflects this inherent property of all arteries.3

Surrogate Measures of Arterial Stiffness and What 
Is Not Technically Stiffness
Arterial stiffness is often determined by measuring the veloc-
ity of pulse-wave travel in a segment of vessel.1 This is a valid 
measure, justified by equations such as the Moens-Korteweg 
and Bramwell Hill equations with which these measures 
agree.3 Other methods to measure arterial stiffness include the 

Table 1.  Applying Classification of Recommendations and Level of Evidence

A recommendation with Level of Evidence B or C does not imply that the recommendation is weak. Many important clinical questions addressed in the guidelines do 
not lend themselves to clinical trials. Although randomized trials are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful 
or effective.

*Data available from clinical trials or registries about the usefulness/efficacy in different subpopulations, such as sex, age, history of diabetes, history of prior 
myocardial infarction, history of heart failure, and prior aspirin use.

†For comparative effectiveness recommendations (Class I and IIa; Level of Evidence A and B only), studies that support the use of comparator verbs should involve 
direct comparisons of the treatments or strategies being evaluated.
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assessment of arterial compliance or distensibility or measures 
of characteristic impedance (relating pressure changes to flow 
changes). When arterial geometry (size and wall thickness) is 
known, it can be used to compute the arterial wall elastic mod-
ulus, a direct expression of the stiffness of the wall. Confusion 
arises when measures such as systolic pressure augmenta-
tion, which compares the first and second systolic peaks in 
the central aortic waveform and is sometimes reported as an 
augmentation index (AIx), are presented as “stiffness” param-
eters. Such measures are the result of several factors, includ-
ing, but not limited to, arterial stiffness (described further in 
the Section 4).4

The Arterial Wall and Stiffness
Arterial stiffness refers to the material properties of the arte-
rial wall, which in turn affect the manner in which pressure, 
blood flow, and arterial diameter change with each heartbeat. 
The pressure load of each heartbeat in large conduit arteries 
is borne mainly by the elastin and collagen components, with 
less contribution from smooth muscle in the muscular arter-
ies. Because of the anatomic arrangement of the elastin and 
collagen fibers, elastin engages at low distention (hence at low 
pressure) and collagen at higher distention (and pressure).5 
The contribution of elastin and collagen to wall stiffness along 
the aorta varies as distance from the aortic valve increases to 
optimize the reservoir function of the aorta.

Arterial stiffness is a major determinant of vascular imped-
ance. Impedance relates the change in arterial pressure to the 
change in blood flow. Flow is determined by the presence of 
a pressure gradient. The relationships between time, pressure, 
and flow are such that local wave velocity becomes a determi-
nant of the instantaneous relationship between pressure and 
flow. For elastic conduits, wave velocity is related to the stiff-
ness of the wall, so changes in stiffness will modulate the pres-
sure/flow relationships. The need to buffer each stroke volume 
and to adapt to changes in flow requires an optimal balance in 
the elastic and inelastic elements in the wall. Disease, aging, 
and other exposures typically reduce the elastic component 
and promote the inelastic (collagen) component such that arte-
rial stiffness generally increases with age in most people.

Changes in arterial stiffness fall into passive and active 
categories. Passive categories relate to arterial wall fiber ele-
ments that are stretched and recoil with each heartbeat and to 
heart rate (higher heart rates can be associated with increased 
arterial stiffness6). Active categories include endothelial func-
tion as it relates to nitric oxide and endothelin and vascular 
smooth muscle in which higher resting tone is associated with 
increased arterial stiffness.7 Inflammation, oxidative stress, 
and turnover in the extracellular matrix of the vessel wall are 
additional active contributors to arterial stiffness.8 In addi-
tion, sympathetic tone and genetic polymorphisms appear to 
regulate arterial stiffness in some vascular beds. The degree 
of the passive and active (functional) effects on wall stiff-
ness depends on the type of artery: A greater degree of func-
tional effects would be manifest in more muscular arteries 
(eg, carotid, iliac) compared with larger nonmuscular conduit 
arteries (eg, aorta).

Section 2: Devices Used to Measure PWV
Recommendations

2.1.    �Arterial stiffness should be determined noninva-
sively by measurement of cfPWV (Class I; Level of 
Evidence A).9,10

2.2.    �PWVs measured in other vascular segments such as 
ankle-brachial or the determination of the cardiac-
ankle vascular stiffness index is useful in cardio-
vascular outcome predictions in Asian populations, 
but longitudinal studies in the United States and 
Europe by these methods are lacking (Class I; Level 
of Evidence B).11,12

2.3.    �Single-point estimates of PWV are not recommend-
ed because there is a lack of evidence of cardiovas-
cular outcome prediction in longitudinal studies. 
Measurement of PWV in other arterial segments 
such as carotid-radial is not recommended because 
it does not predict outcomes (Class III; Level of 
Evidence B).13

Measurements of PWV are undertaken with several method-
ologies, some of which require sophisticated equipment (mag-
netic resonance imaging [MRI]) and software. These fall into 4 
categories:

•	 Devices that use a probe or tonometer to record the pulse 
wave with a transducer

•	 Devices using cuffs placed around the limbs or the neck 
that record arrival of the pulse wave oscillometrically

•	 Ultrasonography approaches
•	 MRI-based approaches

Devices Using a Probe or a Tonometer  
to Measure PWV
A number of devices based on this technology are avail-
able and have been used extensively in published research. 
Tonometry-based techniques (eg, the SphygmoCor device, 
AtCor Medical, West Ryde, NSW, Australia) use a piezoelec-
tric Millar tonometer that is placed at any 2 sites where a pulse 
is detectable. Only 1 tonometer is attached to the unit, so PWV 
measurements require 2 sequential 10- to 20-second readings, 
gated to the ECG, to be taken. The average transit time (TT) 
is then derived with the R wave of the ECG used as a ref-
erence point, and PWV is calculated from the inputted dis-
tance measurement. The SphygmoCor device has been used 
in the Anglo-Cardiff Collaborative Study of arterial stiffness14 
and the Chronic Renal Insufficiency Cohort (CRIC) study of 
chronic kidney disease,15 as well as in other cohorts and inter-
vention studies. Newer versions of this device use a cuff and 
tonometer system to record simultaneous pressure waves.16 
Published reproducibility of the PWV with the SphygmoCor, 
as judged by Bland-Altman plot analysis, is good.17

Mechanotransducer-based techniques (eg, Complior, 
ALAM Medical, Vincennes, France) use similar principles but 
allow simultaneous measurement between sites with disten-
tion sensors. The Complior software provides an online pulse-
wave recording and automatic calculation of the PWV.18 This 
device has been used extensively in epidemiologic studies 
in Europe and has provided much of the early outcome data 
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relating PWV to CVD risk. The published reproducibility of 
the PWV with the Complior, as judged by Bland-Altman plot 
analysis, is good.19

Other tonometry-based devices (eg, PulsePen, DiaTecne, 
Milan, Italy) use an ECG signal and a handheld tonometer 
(similar to the SphygmoCor) to perform cfPWV measures. 
The PulsePen has been used in the Predictive Values of Blood 
Pressure and Arterial Stiffness in Institutionalized Very Aged 
Population (PARTAGE) study conducted in elderly patients 
in France and Italy.20 The reproducibility of the PulsePen, as 
judged by Bland-Altman plot analysis, is good.21

Still other tonometry-based devices (eg, those used by 
Cardiovascular Engineering, Inc, Norwood, MA) use a custom 
device to measure PWV with tonometric methods. The system 
uses the foot-to-foot measure of carotid and femoral pressure 
waveforms, with distance measures to the carotid artery site and 
femoral artery site calculated from the sternal notch. The ECG 
QRS complex is used as the timing onset point, and the elapsed 
time to the carotid pressure waveform foot and the femoral pres-
sure waveform foot is calculated and divided into the distance 
measurement. This system has been used in the Framingham22 
and Reykjavik23 studies, as well as other cohorts and interven-
tion trials. Reproducibility of the PWV by this method is report-
edly good (Gary F. Mitchell, MD, Cardiovascular Engineering, 
Inc, Norwood, MA; personal communication, June 1, 2015).

Devices Using Cuffs Placed Around the Limbs 
or the Neck That Record Pulse-Wave Arrival 
Oscillometrically
Oscillometry-based devices (eg, VP1000, Omron Healthcare, 
Kyoto, Japan) rely on 4 oscillometric cuffs placed on both 
arms (brachial) and ankles to calculate brachial-ankle PWV 
(baPWV; measured in meters per second). It also provides an 
ankle-brachial index (ratio of systolic pressure in the ankle to 
that of the brachial artery; a marker of peripheral arterial dis-
ease when this ratio is <0.9). Newer models (eg, VP2000) have 
additional probes that can be secured in place (with straps) 
that detect carotid and femoral pulses simultaneously (ie, 
both probes capture the same pulse wave) by tonometry. ECG 
leads are attached, as is a phonocardiographic microphone 
(whether the measurements are being done by oscillometry 
or tonometry). The subject’s age, height, and sex are entered 
into the software, and the distance estimate is calculated with 
the use of statistical norms (based on Japanese individuals). 
The Omron device has been used in prospective observational 
studies, mainly in Asia, and for independently predicting loss 
of kidney function,24 CVD,25 and all-cause death.26 Published 
reproducibility of the PWV with the VP1000, as judged by 
Bland-Altman plot analysis, is good.27

Cuff-based devices (eg, Mobil-O-Graph, IEM, Stolberg, 
Germany) capture brachial blood pressure (BP) and brachial 
waveforms (casual and at 24 hours) to estimate central aor-
tic pressures and to estimate cfPWV.28,29 The Mobil-O-Graph 
24-hour pulse-wave analysis ambulatory BP measurement 
device uses a proprietary algorithm to obtain conventional 
brachial BP readings, after which the brachial cuff is inflated 
to the diastolic BP level and held constant for ≈10 seconds to 
record the pulse waves. Subsequently, central pressure curves 
are obtained with the use of a transfer function. To estimate 

aortic PWV, several parameters from pulse-wave analy-
sis, along with wave separation analysis, are combined in a 
proprietary mathematical model incorporating age, systolic 
pressure, and aortic characteristic impedance.30 The Mobil-
O-Graph aortic PWV values have been validated by direct 
intra-arterial measurement in the catheterization laboratory.31 
Reproducibility of the Mobil-O-Graph, as judged by Bland-
Altman plot analysis, is good.32

Some cuff-based devices (eg, Vasera, Fukuda Denshi, 
Tokyo, Japan) use cuffs on all 4 limbs and gate the timing for 
the pulse-wave arrival at the ankle relative to the heart using 
phonocardiography through a small microphone taped onto the 
chest.33 In addition to the cardio-ankle vascular index, which 
is derived from the cardio-ankle PWV, it provides an ankle-
brachial index. This device has been used mainly in Japan for 
longitudinal studies of dialysis patients11 and in community 
studies of cognitive decline.34 Reproducibility of the Vasera, 
as judged by Bland-Altman plot analysis, is good.35

Ultrasonographic Approaches
Ultrasonography can be used to assess vessel distention and 
derived stiffness indexes or flow waveforms to calculate PWV. 
Distention waveforms can be assessed with ultrasound trans-
ducers at a variety of locations, but often the carotid and femo-
ral sites are used. Although some parts of the aorta itself are 
assessable, measurements in the thoracic aorta are technically 
challenging. An average change in cross-sectional area of a 
vessel can be derived from the distention waveform with dedi-
cated software (eg, ARTLAB, ESAOTE, Genoa, Italy). Using 
a value for the pulse pressure (PP), the operator can determine 
distention and compliance. Brachial artery pressure often is 
used rather than local PP, which may introduce inaccuracies, 
as may any delay between distention and BP assessment. 
Pulse-wave speed (c) and other indexes of elasticity such as 
incremental elastic modulus can also be derived, as discussed 
earlier. It is worth noting that most ultrasonographic systems 
and software produce a time-averaged waveform, and math-
ematically, this will yield different values for stiffness indexes 
compared with calculating distention beat by beat and then 
averaging.

In addition, ultrasonography is used to assess local (cross-
sectional) distensibility of vessels such as the carotid artery. 
B-mode ultrasonography, video analysis, and echo-tracking 
methodologies are commonly used approaches.36,37 The 
online-only Data Supplement (Section 6) has more discussion 
of this aspect and device comparisons (Table 6.4 in the online-
only Data Supplement).

Doppler ultrasonography may be used to record flow 
waveforms from accessible sites from which PWV can be 
estimated in a manner similar to PWV based on pressure 
waveforms. Waveforms may be recorded either sequentially 
with ECG gating or simultaneously.38 Typically, 1 ultrasound 
transducer is clamped to the left side of the neck to insonate 
the site of the left subclavian artery or carotid artery, and the 
second transducer is secured on the abdomen, insonating the 
abdominal aorta above the bifurcation. Distance is measured 
from the suprasternal notch (SSN) to the location of the sec-
ond transducer. This can be challenging because the angle of 
insonation makes it difficult to reliably determine where the 
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abdominal aorta is being interrogated in most (obese) people. 
The foot of the flow wave from each of the recording sites is 
used, and the time elapsed in milliseconds is calculated. There 
is no set duration of recording, but averaging several beats 
(commonly 5–10 beats) is beneficial to increase the accuracy 
of the measurement.39 Identifying the foot of the flow wave 
can be more challenging than identifying the foot of a pres-
sure wave. However, such techniques have shown indepen-
dent predictive value for cardiovascular outcomes and death in 
longitudinal studies of diabetics,39 the healthy elderly,40 and a 
general population.41 Published reproducibility of ultrasonog-
raphy-based PWV, as judged by Bland-Altman plot analyses, 
is good.42,43

MRI-Based Approaches
MRI can be applied in much the same way as ultrasonog-
raphy to determine distention-based indexes or PWV. It has  
the advantage of being able to assess almost any vessel and 
providing more accurate distance and area estimates (Vessels 
can always be “cut” in a perpendicular manner). However, 
these advantages are offset by poorer time and spatial resolu-
tion and cost.

Phase-contrast MRI (PC-MRI) can be used to acquire 
blood flow velocity maps along any given anatomic plane. 
When the gradient direction is applied exactly perpendicular 
to the cross-sectional vessel plane (“through-plane” veloc-
ity encoding), flow can be measured through the vessel cross 
section. Such an approach can be used to compute the time 
delay between the onset of flow in the ascending and descend-
ing thoracic aorta, which can be simultaneously interrogated 
in cross section in a properly prescribed anatomic plane. 
Alternatively, the gradient direction can be prescribed in plane 
with the vessel flow axis, allowing the acquisition of a veloc-
ity map along the length of the vessel. This approach allows 
the measurement of the spatiotemporal flow profile along the 
length of the vessel, thus allowing the computation of PWV. 
This approach can be easily applied to the thoracic aorta in the 
“candy-cane” plane.

PC-MRI sequences require a user-defined velocity-
encoding sensitivity, which should be as low as possible 
to minimize noise during the acquisition yet higher than 
peak flow velocity in the region of interest to avoid aliasing. 
Although velocity-encoding sensitivity should be tailored to 
individual measurements, a velocity-encoding sensitivity of 
130 to 150 cm/s allows adequate interrogation of thoracic 
aortic flow in most cases. PC-MRI data are acquired over 
several cardiac cycles, and consistent cardiac timing in each 
cycle is assumed. Adequate PC-MRI flow measurements 
require careful attention to technical details, including the 
recognition and minimization of sources of error such as 
phase-offset errors caused by inhomogeneities of the mag-
netic field environment (short-term eddy currents),44,45 signal 
loss resulting from turbulent flow, partial volume averaging 
resulting from limited spatial resolution, and signal mis-
registration caused by in-plane movement of the aorta and 
pulsatile flow artifacts. The temporal resolution of PC-MRI 
flow measurements should be maximized, which requires 
data collection over multiple cardiac cycles. This is usu-
ally achieved by prolonged (several minutes) acquisitions 

during free breathing. Various alternative techniques have 
been proposed for fast, real-time assessments of PWV.46–49 
More research is needed into the optimal algorithm to mea-
sure the time delay between the foot of the flow waves with 
PC-MRI.

A second approach to measure arterial stiffness with MRI 
involves the assessment of arterial distention, which can be 
paired with pressure measurements to obtain local arterial 
compliance and distensibility. Steady-state free-precession 
techniques provide high contrast between the arterial lumen 
and arterial wall and allow automatic segmentation of aortic 
lumen throughout the cardiac cycle. Such approaches can be 
used to assess ascending aortic properties as long as simul-
taneous (or quasi-simultaneous) central pressure recordings 
are performed. Unfortunately, tonometric arterial pressure 
recordings are difficult within the MRI suite because available 
tonometry systems are not MRI compatible. Good reproduc-
ibility of PWV by PC-MRI has been reported, with intraclass 
correlation coefficients of ≈0.90.50

Many of the devices reviewed in this section can also be 
used to capture waveforms for central aortic pressure-wave 
analysis. Section 4 in this executive summary and Section 4 in 
the online-only Data Supplement provide greater detail.

Regardless of the approach used, it is critical to include 
an accurate measurement of BP at the time of stiffness mea-
surement because mean arterial pressure (MAP) is an impor-
tant determinant of stiffness (Section 7 and Recommendation 
7.1). Reproducibility is generally good, and most devices 
and approaches have been in use for at least a decade. Other 
approaches to measuring arterial stiffness are covered in 
Section 2 in the online-only Data Supplement.

Section 3. Why Is Arterial Stiffness Important?
Recommendation

3.1.    �It is reasonable to measure arterial stiffness to 
provide incremental information beyond standard 
CVD risk factors in the prediction of future CVD 
events (Class IIa; Level of Evidence A).10

Arterial Stiffness as a Predictor of Future 
Cardiovascular Risk
Stiffening of the central arteries has a number of adverse 
hemodynamic consequences, including a widening of PP, a 
decrease in shear stress rate, and an increase in the transmis-
sion of pulsatile flow into the microcirculation. These effects 
have a number of detrimental consequences that may, in part, 
explain mechanistically why stiffness is a predictor of risk. 
Numerous studies involving various disease-specific and com-
munity-based cohorts have demonstrated that higher cfPWV 
is associated with increased risk for a first or recurrent major 
CVD event.9,10 Consideration of cfPWV substantively reclas-
sifies risk in individuals at intermediate risk for CVD, suggest-
ing that consideration of cfPWV provides novel and clinically 
relevant information beyond that provided by standard risk 
factors.10,22 In addition, small studies have demonstrated that 
persistent elevation of cfPWV during treatment for hyperten-
sion or CVD is associated with high risk for an adverse out-
come in those with established disease.51,52 The added benefit 
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of cfPWV in risk prediction models may be a manifestation of 
the relatively modest relation between cfPWV and standard 
risk factors other than age and BP.53 In a recent individual-par-
ticipant meta-analysis, higher cfPWV was shown to be associ-
ated with increased risk for coronary heart disease, stroke, and 
composite cardiovascular events. Importantly, relative risk 
was strongest in younger individuals, in whom an opportunity 
exists for early identification, lifestyle modification, and pos-
sible mitigation or prevention of further potentially irrevers-
ible deterioration of aortic structure and function.10

Hypertension
The association between arterial stiffness and hypertension 
is well established.54–58 There is a widely held belief that 
increased aortic stiffness in hypertensive individuals is largely 
a manifestation of long-standing hypertension-related dam-
age that stiffens the large arteries. A recent analysis from the 
Framingham Heart Study found that higher arterial stiffness, 
as assessed by cfPWV, was associated with BP progression 
and incident hypertension 7 years later.54 However, higher BP 
at an initial examination was not associated with progressive 
aortic stiffening, suggesting that aortic stiffness is a cause 
rather than a consequence of hypertension in middle-aged and 
older individuals. These results and several additional studies 
provide strong evidence in support of the hypothesis that arte-
rial stiffness represents a cause rather than a consequence of 
hypertension and underscore the importance of better defining 
the pathogenesis of aortic stiffening.55–58

High aortic stiffness is associated with increased BP labil-
ity.59–61 A stiffened vasculature is less able to buffer short-term 
alterations in flow. Increased aortic stiffness is also associated 
with impaired baroreceptor sensitivity.59,62–64 Together, these 
limitations may result in potentially marked alterations in BP 
as cardiac output changes during normal daily activities such 
as changes in posture and physical exertion.65

Cardiac Disease
Excessive arterial stiffness represents a compound insult on 
the heart. Aortic stiffening increases left ventricular (LV) sys-
tolic load, which contributes to ventricular remodeling and 
reduced mechanical efficiency. This leads to an increase in 
myocardial oxygen demand,66 compounded by a reduction 
in diastolic coronary perfusion as PP widens and diastolic 
BP decreases with aortic stiffening.67 Arterial stiffening may 
be associated with impaired measures of LV diastolic func-
tion,68,69 which may increase cardiac filling pressure and fur-
ther limits coronary perfusion. Finally, arterial stiffness is 
associated with atherosclerosis,70–73 which may further impair 
ventricular perfusion, possibly leading to catastrophic reduc-
tions in ventricular function during ischemia.67

Arterial stiffness is associated with diastolic dysfunc-
tion and diastolic heart failure resulting from direct effects 
of abnormal load and loading sequence on myocyte contrac-
tion and relaxation and indirectly through ventricular hyper-
trophy.69,74–78 Diastolic dysfunction increases filling pressures 
and thus may increase load on the atria, which will contribute 
to atrial hypertrophy and fibrosis and ultimately to atrial fibril-
lation.79 Arterial stiffness is independently associated with an 
increased risk of heart failure80 and is increased in patients 

with established heart failure regardless of whether LV func-
tion is preserved or impaired.81–83

Peripheral Vascular Function
Arterial stiffness (arteriosclerosis) is associated with athero-
sclerosis, although the association is not strong and the 2 pro-
cesses should be viewed as distinct pathophysiological entities. 
Aortic stiffening may increase the risk for development of ath-
erosclerosis as a result of atherogenic hemodynamic stresses 
associated with a stiffened aorta, including increased pressure 
pulsatility and abnormal flow patterns in large arteries, with 
high flow and shear stress during systole, and with stasis, 
or flow reversal, during diastole.84 Arteriosclerosis also has 
important implications for the structure and function of the 
microcirculation.

Aortic stiffening leads to loss of normal impedance mis-
match between the normally compliant aorta and stiff muscu-
lar arteries. Loss of impedance mismatch reduces the amount 
of wave reflection at the interface between aorta and proximal 
branch vessels and therefore increases transmission of exces-
sive pulsatile energy into the periphery, where it may cause 
damage.23,85,86 Increased aortic stiffness and excessive pressure 
pulsatility are associated with increased resting microvascu-
lar resistance and markedly impaired postischemic reactive 
hyperemia in the forearm.87 Resistance vessel remodeling, as 
assessed by the media-to-lumen ratio, is more closely related 
to PP than mean pressure, suggesting that anatomic constraints 
may contribute to limited reactivity in remodeled vascular 
beds.88–91 Indeed, a recent study demonstrated a significant 
relationship between aortic PWV and the media-to-lumen 
ratio of small resistance arteries in a cohort of hypertensive 
patients after adjustment for age and BP.92 Dynamic tone in 
small arteries is also affected by pressure pulsatility.93–96 As a 
result, vascular resistance in autoregulated organs such as the 
kidney and brain may depend on PP and MAP. If resistance 
vessel tone increases in response to PP at a constant level of 
mean pressure, flow will decrease as resistance increases. 
Hence, alterations in the relation between mean and PP could 
lead to dissociation between mean pressure and resistance 
and interfere with the autoregulation of flow. Beyond midlife, 
PP increases rapidly as mean pressure remains constant or 
decreases, potentially putting autoregulated organs at risk for 
relative ischemia.

Central Nervous System
High-flow organs such as the brain and eye are particularly 
sensitive to excessive pressure and flow pulsatility.97 High local 
blood flow is associated with low microvascular impedance, 
which facilitates penetration of excessive pulsatile energy into 
the microvascular bed.23 This may contribute to repeated epi-
sodes of microvascular ischemia and tissue damage and mani-
fests as white matter hyperintensities, clinically unrecognized 
focal brain infarcts, and tissue atrophy, each of which contrib-
utes to cognitive impairment and frank dementia.

Aortic stiffening is also associated with increased risk for 
large-vessel stroke, either ischemic or hemorrhagic.98,99 This 
may be mediated through atherosclerosis, with increased stiff-
ness contributing to both atherogenesis and risk for plaque 
rupture100; through atrial enlargement and fibrosis, which 

 at INSERM - DISC on September 8, 2015http://hyper.ahajournals.org/Downloaded from 

http://hyper.ahajournals.org/


704    Hypertension    September 2015

can trigger atrial fibrillation, providing a cardiac source for 
embolus79; or through diastolic flow reversal in the aorta, 
which could disrupt and redirect plaque from the distal arch 
into the carotid circulation.101 Excessive pressure pulsatil-
ity can also predispose to large-artery dissection or rupture 
of intracranial aneurysms, leading to hemorrhagic stroke. In 
addition, increased aortic stiffness is associated with BP labil-
ity, which is a risk factor for incident stroke.102

Arterial stiffness is also associated with impaired cogni-
tive function in selected103–107 and community-based sam-
ples.23,108–112 In light of the generalized insult on the brain 
vasculature that occurs, it is perhaps not surprising that aor-
tic stiffness is associated with a broad spectrum of cognitive 
sequelae and has been established as a risk factor for both vas-
cular and Alzheimer-type dementia.113

Kidney Disease
Like the brain, the kidneys are low-impedance organs that are 
exposed to obligate high flow throughout the day. In addition, 
the unique structure of the microvasculature in the kidney, with 
resistance vessels on either side of the glomerulus, markedly 
increases pressure in the glomerulus to nearly aortic levels. In 
the presence of increased aortic stiffness, the microvasculature 
of the kidney is exposed to excessive pressure and flow pulsatil-
ity, which can damage the glomerulus, leading to proteinuria 
and loss of function.114,115 Recently, increased renal pulsatility 
has been correlated with cardiovascular and renal outcomes.116 
Numerous studies have demonstrated modest but robust asso-
ciations between increased PP or PWV and reduced glomeru-
lar filtration rate (GFR) or proteinuria.117–123 However, relations 
between estimated GFR and stiffness measures are less robust 
in some studies after adjustment for potential confounders. In 
a study that measured GFR directly, higher PP was associ-
ated with reduced measured GFR.124 Importantly, PP was not 
related to GFR estimated from serum creatinine in that study, 
indicating that relations between PP and estimated GFR may be 
obscured in older individuals in whom loss of muscle mass may 
reduce the accuracy of creatinine-based GFR-estimating equa-
tions.125–127 Given that the prevalence of abnormal aortic stiff-
ness is heavily age dependent, the burden of stiffness-related 
kidney damage may be underestimated when estimated GFR is 
used as a surrogate for kidney function.

Thresholds and Normative Values  
for Risk Assessment
cfPWV was included in the 2007 European Society of 
Hypertension/European Society of Cardiology guidelines for 
the management of hypertension128 in which a fixed cutoff of 
12 m/s was proposed, indicating subclinical organ damage. 
This was modified by a recent expert consensus, which took 
into consideration a new distance calculation methodology 
and recommended a new 10-m/s threshold (derived by mul-
tiplying 12 m/s by 0.8 and then rounding up).129 Although 
attractive because of the simplistic approach, risk estimation 
based on fixed thresholds has several limitations, not least of 
which are the relatively continuous relationship between risk 
and cfPWV and the failure to consider factors such as tran-
sient elevation of MAP, which may confound cfPWV values 
because of nonlinear stiffness of the aortic wall.

A single threshold also fails to take into consideration 
the dominant effect that age has on PWV. A cfPWV value of 
12.1 m/s may convey different prognostic information in an 
80-year-old person and in a 25-year-old person. Variability 
of cfPWV with age prompted an interest in attempting 
to establish reference values for various segments of the 
population.129,130 The European Network for Non-invasive 
Investigation of Large Arteries assembled the Reference 
Values for Arterial Stiffness’ Collaboration, which was tasked 
with generating reference and normative values for cfPWV. 
The cohort included 11 092 individuals who yielded reference 
values of cfPWV stratified by age groups (<30, 30–39, 40–49, 
50–59, 60–69, and >70 years). In addition, from the subset of 
individuals who had optimal or normal BP and no additional 
cardiovascular risk factors, normative values for cfPWV were 
generated according to age groups.131 However, it should be 
emphasized that these normative and reference values are 
applicable predominantly to measurements performed with 
the aforementioned methodologies.

Despite the attractiveness of age-relative normative thresh-
olds, it is important to recognize that an age-related increase 
in cfPWV should not necessarily be viewed as inevitable or 
indeed a normal part of the aging process. Although cfPWV 
increases exponentially with aging in most populations, it 
appears to increase much less rapidly in truly rural or indig-
enous populations,132,133 as Truswell et al134 reported for BP in 
the 1970s. The observation that cfPWV increases more mod-
estly with age in lower-risk individuals suggests that a major 
part of age-related stiffening is pathological and that therefore 
it may not be appropriate to use age-specific thresholds for 
risk estimation.

Section 4: Arterial Stiffness,  
Wave Reflections, and LV Afterload

Recommendations
4.1.    �Both time-resolved central pressure and central 

aortic flow should be quantified when assessing LV 
afterload as either an exposure for a cardiovascular 
outcome or a target for intervention (Class I; Level 
of Evidence C).

4.2.    �The use of pressure-flow analyses, which are con-
sidered the gold-standard assessment, is recom-
mended to determine LV afterload (Class I; Level 
of Evidence A).135,136

4.3.    �Effective arterial elastance (Ea) should not be used 
as an index of pulsatile LV afterload or arterial 
stiffness because it represents a poor index of pul-
satile load and is not significantly influenced by ar-
terial stiffness (Class III; Level of Evidence B).137,138

4.4.    �The use of wave separation analysis, as opposed to aor-
tic AIx, is recommended when investigations are fo-
cused specifically on the role of wave reflection as either 
an exposure for a cardiovascular outcome or a target 
for intervention (Class I; Level of Evidence B).41,139,140

The mechanical “afterload” imposed by the systemic circu-
lation to the pumping LV is the aortic input impedance, is 
an important determinant of normal cardiovascular function, 
and is a key pathophysiological factor in various cardiac 
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and vascular disease states. In the presence of a normal aor-
tic valve, LV afterload is determined largely by the elastic 
properties (arterial stiffness), arteriolar caliber, and wave 
reflection characteristics of the arterial tree (arterial load).136 
Arterial load is complex and time varying and cannot be 
characterized by a single number or index. LV afterload is 
composed of a steady component and a pulsatile component 
and can be described by the following indexes: systemic 
vascular resistance, aortic characteristic impedance, total 
arterial compliance, wave reflection amplitude, and reflected 
wave TT.

Systemic vascular resistance, the steady component of LV 
afterload, is determined largely by arteriolar caliber and num-
ber. Pulsatile load, in contrast, is determined by the hemody-
namic function of conduit arteries, which in turn depends on 
their geometry and wall stiffness. Although brachial arterial 
pressure (systolic, diastolic, and pulse pressures) is often used 
as a surrogate of arterial function and LV afterload in clini-
cal practice, LV afterload cannot be fully described in terms 
of peripheral pressure alone and needs to be assessed in the 
frequency domain from central aortic pulsatile pressure-flow 
relations141,142 or estimated in the time domain from the aortic 
pulsatile pressure alone.3

Furthermore, it should be recognized that afterload 
affects, in a reciprocal fashion, the pressure and flow waves 
generated by the LV and that pressure and flow waves not only 
are dependent on load but also are strongly influenced by LV 
structure and function.

Flow can be measured invasively with a flow wire or non-
invasively with MRI or with pulsed-wave Doppler echocar-
diography interrogating the LV outflow tract. Central aortic 
pressure can be measured invasively with a pressure-sensing 
catheter or wire or via radial arterial tonometry and a general 
transfer function, which synthesizes a central aortic pressure 
waveform,3 or by carotid arterial tonometry. For noninvasive 
assessments, calibration of central pressure waveforms should 
be performed with the use of peripheral diastolic pressure and 
MAP, which (in contrast to systolic pressure) remain rela-
tively constant throughout the arterial tree.135 To obtain cen-
tral aortic pressure waveforms, calibration of the radial artery 
waveform is performed with peripheral systolic and diastolic 
pressures.1,3

An increase in the pulsatile component of afterload causes 
an undesirable mismatch between the LV and the arterial sys-
tem, increasing myocardial oxygen demand and decreasing 
cardiac efficiency.66,143 These changes in ventricular/vascular 
coupling promote the development of LV hypertrophy and 
often lead to both systolic and diastolic myocardial dysfunc-
tion.69,144–146 In health, there is an increase (or amplification) 
in the PP as the pulse wave travels from the proximal aorta 
to the periphery. Increasing aortic wave reflection amplitude 
increases aortic systolic pressure, decreases the gap between 
central and peripheral PPs, and dampens (or reduces) this 
amplification. Decreasing wave reflection amplitude with anti-
hypertensive therapy or exercise conditioning increases the 
gap (and amplification) and reduces target-organ damage.147 
Conversely, a reduction in PP amplification is associated with 
overt target-organ damage and independently predicts future 
cardiovascular mortality.148,149

Thus, PP amplification has been proposed as a potential 
mechanical biomarker of cardiovascular risk and global arte-
rial function. As a result of systemic changes in arterial stiff-
ness and wave reflections coupled with changes in heart rate, 
brachial BP is not an accurate predictor of LV load and central 
hemodynamic burden. Moreover, the beneficial reduction in 
ascending aortic systolic pressure and PP with various thera-
peutic approaches is often underestimated by cuff measure-
ments of brachial artery pressure.3,150

Once measures of central aortic pressure and flow are 
obtained, they can be modeled to assess steady and pulsatile 
LV afterload and the amplitude and timing of wave reflec-
tions. An important relationship in the aorta is the pressure 
adaptation to pulsatile flow. When there is no influence on 
this relationship from wave reflections, as occurs early in 
early systole, pressure and flow waveforms look very similar. 
The relationship of aortic pressure and flow in the absence 
of wave reflections is called the characteristic impedance 
and is typically depicted as Zc (or Zo). An illustration of this 
relationship is shown in Figure 4.3 in the online-only Data 
Supplement. After arrival of the reflected wave in the central 
aorta, the pressure and flow waveforms diverge because the 
reflected wave increases systolic pressure and reduces flow 
during deceleration. The degree of this divergence is associ-
ated with the local Zc and reflection site distance.151–153 This 
principle is used in linear wave separation analysis, which 
decomposes pressure and flow waveforms into their forward 
(incident) and backward (reflected) components. Reflection 
magnitude is expressed as the ratio of the amplitudes of 
reflected/forward pressure waves,153 whereas reflection index, 
or AIx, is the ratio of the amplitude of the reflected wave 
and central aortic PP. Reflected pressure waves arriving at 
the proximal aorta increase the late systolic load of the LV, 
thus altering the loading sequence. Increased wave reflection 
amplitude and an LV loading sequence characterized by late 
systolic load have been shown to cause myocardial hypertro-
phy,144,154,155 myocardial fibrosis,154 and systolic and diastolic 
myocardial dysfunction74,76,156–162 and to strongly predict an 
increased risk of future heart failure.139,161 Increased wave 
reflections have also been shown to predict all-cause 15-year 
mortality.41

Because invasive recordings of central aortic pressure and 
flow waves and pulse-wave analysis can be made in only a 
select number of patients in the catheterization laboratory, 
techniques have been developed recently that enable the non-
invasive determination of the above variables163,164 in large 
cohorts with similar results.143,165–170 Some studies use the 
carotid artery wave as a surrogate for the central aortic pres-
sure wave; others derive it from the radial artery wave using a 
general transfer function. Briefly, radial artery pressure waves 
are recorded at the wrist with the use of applanation tonom-
etry with a high-fidelity micromanometer. After 20 sequen-
tial waveforms are acquired and an ensemble is averaged, a 
validated general transfer function is used to synthesize the 
central aortic pressure wave noninvasively. To obtain the gen-
eral transfer function, computer software performs a Fourier 
series representation of the radial artery waveform into har-
monic components of amplitude and phase angle. These har-
monics are then adjusted with the use of data obtained from 
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previous invasively measured aortic pressure waves to obtain 
the noninvasive synthesized central aortic pressure wave.3 
Two visible demarcations usually occur on the initial upstroke 
of the central aortic pressure wave in middle-aged and older 
individuals: the first shoulder and the inflection point. These 
demarcation points occur at an earlier age in patients with 
hypertension. The first (or early) shoulder is generated by LV 
ejection and occurs at peak blood flow velocity, whereas the 
inflection point occurs later and denotes the initial upstroke of 
the reflected pressure wave; this wave represents the second 
(or mid to late) systolic shoulder.3,171–175 The first shoulder is 
an estimate of forward traveling-wave amplitude, and the sec-
ond shoulder is an estimate of reflected-wave amplitude. The 
characteristics of the reflected wave depend on the physical 
properties (stiffness, taper, and branching) of the entire arte-
rial tree (elastic plus muscular arteries and arterioles), PWV, 
the round-trip travel time of the wave from the heart to the 
periphery and back, and the distance to the major “effective” 
reflecting site in the lower body.3,171–175

Ea, computed as the ratio of end-systolic pressure to 
stroke volume, was proposed as a lumped parameter of resis-
tive and pulsatile LV afterload176 and is increasingly being 
used because of the simplicity of its computation. However, 
Ea is almost entirely determined by the product of heart rate 
(a cardiac property) and systemic vascular resistance138,177 and, 
despite its name, does not reflect or characterize pulsatile LV 
afterload.137,138 Ea does not represent a physical elastance (or 
compliance) and is not related to arterial stiffness. Therefore, 
it should not be interpreted or used to measure pulsatile after-
load or arterial stiffness.

Interventions that reduce arterial stiffness and wave 
reflections, the primary cause of elevated systolic BP and LV 
hypertrophy, include drugs prescribed for the treatment of 
hypertension and heart failure. These drugs are usually cat-
egorized as vasodilators, aldosterone blockers, β-blockers, 
and diuretics. Different cardiovascular drugs have different 
effects on arterial properties (structure and function) and 
wave reflection characteristics.165,178–180 In most countries, 
thiazide diuretics are the cheapest antihypertensive drugs 
available. They are the recommended first-line treatment 
for hypertension in the United States (Seventh Report of the 
Joint National Committee).181 Diuretics and pure β-blockers 
decrease BP but have little if any direct (active) effect on arte-
rial properties and wave reflection characteristics. Selective 
and nonselective aldosterone blockers attenuate cfPWV and 
AIx182,183 in select patient groups by increasing nitric oxide 
bioactivity and improving endothelial vasodilator dysfunc-
tion.184 Vasodilating drugs such as hydralazine and dipyri-
damole primarily increase arteriolar caliber and therefore 
decrease peripheral resistance and MAP via their action on 
arteriolar smooth muscle cells with little effect on aortic wave 
reflections.185 Nitrates primarily relax smooth muscle cells in 
large conduit muscular arteries and therefore decrease arterial 
stiffness and aortic wave reflection amplitude and duration and 
reduce central systolic and PP, with little change in brachial 
cuff systolic pressure and PP.186–188 Angiotensin-converting 
enzyme inhibitors, angiotensin receptor blockers, and cal-
cium channel blockers are the most commonly used vasodila-
tor drugs. These drugs appear to have little direct effect on 

stiffness of elastic arteries such as the aorta independently of 
BP reduction,3,180 although some studies question this find-
ing.189–191 A recent meta-analysis observed that angiotensin-
converting enzyme inhibitor therapy improved the stiffening 
of arteries, as reflected by PWV, and reduced arterial wave 
reflections, as assessed by AIx, compared with placebo.192 
β-Blockers appear to show less benefit on central aortic pres-
sure compared with angiotensin-converting enzyme inhibi-
tion (eg, in the Conduit Artery Function Evaluation study193), 
but less is known about newer β-blockers that feature either 
concurrent α-blockade (carvedilol) or nitric oxide stimula-
tion (nebivolol).

Several nonpharmacological interventions reduce arte-
rial stiffness and wave reflections, including aerobic exercise 
training,194,195 dietary changes (including weight loss and salt 
reduction),196–199 passive vibration,200 and enhanced external 
counterpulsation treatment.201 For maximum cardiovascu-
lar benefits, these interventions must be initially introduced 
immediately and continued over an extended period of time. 
Although the effects of exercise on arterial stiffness and wave 
reflections have been studied for more than half a century,202 
many aspects remain unclear. It appears that the effects depend 
on the type (aerobic or resistance), intensity, and duration of 
exercise (short or long term [endurance, training, condition-
ing]). Multiple studies attest to the benefits of regular aerobic 
physical exercise in advanced age, hypertension, DM, coro-
nary artery disease, and heart failure; to the improvement in 
oxygen extraction from blood; and to the improvement in car-
diovascular function that occur with exercise training. Cross-
sectional studies of aerobic exercise–trained individuals are 
conflicting and have reported both reduced pressure195,203,204 
and increased pressure205,206 from wave reflections. These dif-
ferences in wave reflection characteristics and central aortic 
pressure may be linked to lower heart rates in the endurance-
trained subjects. The increase in pressure is probably because 
of an increase in the first systolic shoulder resulting from 
an increase in peak aortic blood flow. Longitudinal exercise 
training studies are similarly somewhat conflicting and have 
noted improvements in pressure from wave reflections194,207 or 
no change.208 Although endurance exercise training has been 
shown to reduce arterial stiffness and to improve peripheral 
vascular tone and endothelial function, exercise training–
mediated reductions in heart rate209 and improvements in LV 
contractility210 likely represent equipoise in their potential to 
detect a reduction in pressure from wave reflections consis-
tently across studies. There is no doubt that weight loss and 
regular exercise lower LV afterload (static and dynamic com-
ponents) and heart rate, enhance quality of life, and reduce 
morbidity and mortality from cardiovascular events.211 In a 
recent review of the effects of diet and exercise on arterial 
stiffness in patients with elevated cardiometabolic risk from 
hypertension, signs of atherosclerosis, or kidney disease, 
Sacre and colleagues212 noted that these nondrug interventions 
can improve arterial stiffness by several mechanisms. Aerobic 
exercise may do so by improving vascular smooth muscle 
cell relaxation through increased nitric oxide bioavailability 
and reductions in oxidant stress and inflammation. Among 
dietary approaches, although it has been shown so far that 
reductions in sodium intake are associated with reductions 
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in PWV, these seem to be due largely to the changes in BP 
that occur (although others have found a reduction in PWV 
independently of BP changes213). Sacre et al212 also noted that 
increased sodium intake and caffeine supplements tended to 
promote arterial stiffness. People who exercise regularly are 
more likely than those who do not to control their weight and 
to control other risk factors for coronary and other vascular 
diseases. In older individuals, 1 year of exercise training was 
found to significantly improve physical fitness and lifetime 
risk for CVD without affecting endothelial function or arterial 
stiffness.214

Short-term resistance exercise imposes a very different 
stress on the cardiovascular system than aerobic exercise. 
Although aerobic exercise induces a volume load on the 
heart and other organs, resistance exercise imposes a pressure 
load. A single bout of resistance exercise increases pressure 
from wave reflections, and unlike aerobic exercise, resistance 
exercise increases aortic stiffness and reduces PP amplifica-
tion.215 The effect of habitual resistance exercise training on 
central aortic stiffness and pressure from wave reflections 
remains controversial. A recent meta-analysis concluded 
that high-intensity resistance exercise training is associated 
with increases in central aortic stiffness in those with lower 
baseline stiffness values.216 Resistance exercise training was 
initially shown to increase pressure from wave reflections,217 
with subsequent studies noting no effect.209,218–222

Other aspects of ventricular-vascular coupling, including 
myocardial wall stress, are covered in Section 4 in the online-
only Data Supplement.

Section 5. Arterial Stiffness in Children
Recommendation

5.1.    �Devices measuring stiffness in children should be 
validated in children (Class I; Level of Evidence C).

The participants of the major longitudinal studies of cardio-
vascular risk factors in children are too young to provide data 
linking cardiovascular risk factor levels measured in child-
hood to hard cardiovascular events in adulthood.223

However, there are correlations between known adult car-
diovascular risk factors, high-risk conditions such as chronic 
kidney disease and DM, and novel risk factors with intermedi-
ate noninvasive measures of vascular health, which are linked 
to hard events in adults. In this section, we discuss the cur-
rent evidence, with reference to the previous American Heart 
Association article on noninvasive measures in children.224

Arterial Stiffness, Cardiovascular Risk Factors, and 
High-Risk Disease States in Pediatrics
There are now sufficient data from studies such as the Bogalusa 
Heart Study to link cardiovascular risk factors measured in 
youth such as BP directly to estimated PWV in adulthood.225 
The Cardiovascular Risk in Young Finns study has also dem-
onstrated higher adult PWV with clustering of risk factors in 
youth such as in the metabolic syndrome.226 Conversely, clus-
tering of advantageous risk factors (fruit and vegetable con-
sumption) is associated with a lower PWV as an adult.227 Low 
birth weight was associated with higher PWV in adulthood in 

a study that examined baPWV,228 but an association was not 
found in a study that examined cfPWV.229 These differences 
highlight the importance of standardization of measurements 
and that indexes of stiffness are not always interchangeable 
because they may convey different predictive values.

These observations led to interest in delineating the deter-
minants of PWV in healthy children and adolescents. Two 
studies evaluated sex differences in PWV. One study found 
higher cfPWV and femoral-dorsalis pedis PWV in female 
subjects before puberty, with the difference for cfPWV dis-
appearing after maturation, whereas femoral-dorsalis pedis 
PWV was higher in male subjects after puberty.230 Higher 
values of baPWV were found in male subjects regardless of 
maturation level.231

Traditional cardiovascular risk factors have been found to 
influence PWV in youth. Children with elevated low-density 
lipoprotein cholesterol had significantly higher PWV com-
pared with control subjects (4.72±0.72 versus 3.66±0.55 
m/s),232 and PWV increases across tertiles of ratio of triglycer-
ides to high-density lipoprotein, a lipid parameter that reflects 
burden of small dense low-density lipoprotein particles.233 
Higher PWV compared with control subjects was found in 
adolescents with a family history of hypertension,234,235 pre-
hypertension,236–238 and sustained hypertension.236,237 Other 
cardiovascular risk factors such as psychosocial stress,239–241 
smoking,242 low physical fitness243,244 or physical inactiv-
ity,245,246 and low dairy intake247 have also been related to 
higher PWV in pediatric patients. However, the studies vary 
considerably in adjustments for confounding factors such as 
MAP, heart rate, and age, making interpretation of potential 
causality difficult.

Many data are also available to examine the relationship 
between obesity and PWV in the young. Two large studies 
with >600 subjects each demonstrated higher PWV in obese 
adolescents compared with their lean counterparts,248 and 
the effect of obesity was independent of other cardiovascu-
lar risk factors.249 Obesity-related metabolic syndrome clus-
tering was also shown to result in higher PWV.250 However, 
insulin resistance appears to play an independent role only for 
baPWV,251,252 not for cfPWV.253

Because cardiovascular risk factors influence PWV, it 
is not surprising that higher PWV is found in children and 
adolescents with high-risk conditions. Youths with type 2 
DM have higher PWV than both their lean and obese coun-
terparts.249 Surprisingly, subjects with type 2 DM have higher 
PWV than those with type 1 DM despite a shorter duration 
of disease.254 In a study of 535 subjects with type 1 DM and 
60 with type 2 DM, the higher PWV in subjects with type 2 
DM was explained largely by increased central adiposity and 
higher BP.254

Pediatric patients with renal disease also demonstrate 
increased arterial stiffness, a potential mechanism for the 
observed increased in cardiovascular events in adults with 
kidney disease.255 Children on dialysis have higher PWV 
than less severely affected patients256 and control subjects.257 
Unfortunately, these adverse vascular changes may not nor-
malize after renal transplantation.258–260 However, children 
with glomerulonephritis and increased PWV saw normal-
ization with recovery.261 For this reason, there is hope that 
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treatment of inflammatory vasculitis such as that seen in HIV 
infection,262 polyarteritis nodosa,263 and Kawasaki disease264 
may result in a reduction of PWV, although these types of 
long-term interventional studies have not been carried out 
to date.

A number of studies have evaluated PWV in children with 
congenital heart disease. Not surprisingly, PWV is higher in 
pediatric patients after cardiac transplantation.265 Increased 
PWV has also been demonstrated after repair of tetralogy 
of Fallot, which is hypothesized to be a risk factor for pro-
gressive aortic root dilation in these patients,266–268 and in 
youth after arterial switch operation for transposition of the 
great vessels.269 The largest amount of work has been done 
in patients after repair of coarctation of the aorta as a result 
of heightened concern for the role of arterial stiffness, mani-
fested as increased PWV, in late complications such as hyper-
tension270–273 and premature CVD.274 Data on other inherited 
disorders associated with increased arterial stiffness are less 
clear. One study of patients with Marfan syndrome found 
higher PWVs compared with control subjects,174 whereas 
another small study of patients with Marfan syndrome (n=10 
cases and 10 controls)275 and a study of youth with neurofibro-
matosis type 1276 found no differences. Clearly, larger studies 
of PWV in pediatric patients with these high-risk conditions 
should be conducted.

The use of these noninvasive intermediate end points to 
better risk stratify youth is essential because data linking 
childhood measures of cardiovascular risk factors to hard car-
diovascular events in adults are lacking. Further studies cor-
relating risk factors to vascular damage or other target-organ 
damage such as LV hypertrophy will provide evidence to 
pediatric practitioners faced with the challenge of implement-
ing aggressive drug therapy in high-risk children. Assessing 
PWV in healthy children may also provide an ideal platform 
to identify novel mechanisms driving stiffness because the 
influence of traditional cardiovascular risk factors and athero-
sclerosis per se will be minimized.

Developmental Changes in Arterial  
Function in Childhood
Many investigators have found an increase in arterial stiffness 
from childhood to adolescence,133,231,277,278 including large- and 
small-artery compliance.279 Using MRI, Voges et al280 found a 
decrease in descending aorta distensibility and an increase in 
PWV starting at 2.3 years of age. It appears that these must 
relate to changes in the vessel wall because vascular compli-
ance is determined by both vessel size and distensibility of 
the wall and because the MRI study demonstrated a steady 
increase in cross-sectional area of the descending aorta (with 
a slight plateauing after 15 years of age).280 Similarly, Senzaki 
et al281 found that although arterial compliance increased from 
birth to 20 years of age, once normalized for body surface 
area to control for differences in arterial size, there was an 
overall decline over this period of time, although the rate of 
change was not constant, with the most rapid decline in com-
pliance during periods of most rapid growth from 3 to 7 years 
of age. Whether there are sex-related differences in develop-
mental changes in arterial stiffness is less clear. Ahimastos 
et al230 found lower systemic arterial compliance and PWV 

in prepubertal girls compared with boys with no difference 
seen after puberty; Fischer et al278 found sex differences in 
PWV both before and after puberty; and Voges et al280 found 
no difference. Clearly, more studies defining normal levels 
for arterial function parameters and better data outlining the 
determinants of increased stiffness across the pediatric age 
groups are needed. Other vascular measures such as arterial 
distensibility, aortic AIx, ambulatory arterial stiffness index, 
normal values in youth, and technical considerations for mea-
surement in children are discussed in Section 5 in the online-
only Data Supplement.

Section 6. Validation of Arterial  
Stiffness Devices

Recommendations
6.1.    �The distance for the cfPWV should be determined 

by subtracting the SSN to the carotid site distance 
from the SSN to the femoral site distance or by mul-
tiplying the total directly measured distance by 0.8 
(Class I; Level of Evidence B).282

6.2.    �Validation studies should be performed against 
invasive measurements. When this is not possible, 
new devices should be validated against a noninva-
sive device that has been used in prospective trials 
showing an independent prognostic value of PWV 
(Table 2) (Class I; Level of Evidence C).

In this section, we review the standards by which measure-
ment methods of PWV are validated, discussing several meth-
odologies for noninvasive PWV estimation.

Invasive Aortic PWV
This measurement has the advantage of being a simple, 
straightforward, precise, reproducible technique (measur-
ing TT simultaneously or ECG-triggered and travel distance 
[TD] between 2 measurement sites).282 Of note, pressure 
waves measured at different points in the aorta travel in only 
1 direction along the aorta, yielding a physiologically correct 
measurement. However, true invasive aortic PWV has been 
reported rarely and for obvious reasons only in patients sched-
uled for coronary angiography.282, 284–289 To date, 1 study has 
investigated its relationship to clinical outcomes.286

MRI-Based Aortic PWV
With this technique, TD can be measured very accurately 
with precise 3-dimensional imaging approaches. TT can be 

Table 2.  Recommendations for Grading Comparisons of 
Devices/Procedures for Measuring PWV With a Gold-Standard 
Device According to ARTERY Society Guidelines283

Accuracy PWV Measurement

Excellent Mean difference ≤0.5 m/s  
and SD ≤0.8 m/s

Acceptable Mean difference <1 m/s 
and SD ≤1.5 m/s

Poor Mean difference ≥1 m/s or  
SD >1.5 m/s

PWV indicates pulse-wave velocity.
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estimated from dedicated sequences to derive flow signals. 
Flow signals as measured travel along the aorta in only 1 
direction along a single path, yielding a physiologically cor-
rect measurement. However, the temporal resolution for 
TT assessment is somewhat lower compared with the other 
techniques, although this has been improved recently.290 The 
reproducibility and accuracy with respect to invasive mea-
surements may also depend on the methods used to determine 
TT,291 and to date, there is no consensus on the best method to 
be used. Finally, there are no published studies relating MRI-
based aortic PWV to cardiovascular end points.

Simultaneous Noninvasive Acquisition of Pressure 
Waves at the Carotid and Femoral Arteries
There are no studies showing the superiority of simultane-
ous measurements as opposed to sequential (ECG-triggered) 
recordings. When the sequential recordings are made a short 
time apart, heart rate variability or the change in the iso-
volumic period probably has no or only minor effects on 
measured TTs.36

Can Dedicated Devices for the Measurement  
of cfPWV Be Recommended as a Noninvasive  
Gold Standard?
Validation studies using invasive aortic PWV as reference 
are limited to patients undergoing cardiac catheterization 
on clinical indications, thus limiting such studies to a rela-
tively small group of patients. When MRI-based aortic PWV 
is considered as reference, the dedicated MRI environment 
often will preclude simultaneous measurements (the same is 
true for invasive aortic PWV). In addition, some questions 
with respect to temporal resolution remain to be solved. For 
these reasons, it seems reasonable to perform validation stud-
ies against dedicated devices that have been used widely in 
prospective trials showing an independent prognostic value 
of cfPWV (Complior device, ALAM Medical; SphygmoCor 
device, AtCor Medical).

Standardization of Methods for Comparison  
of Devices
Because of the expansion of the field for noninvasive assess-
ment of vascular function, devices are being constructed with 
varying pulse-sensing techniques and signal-processing algo-
rithms. For proper and useful comparison of devices, there is 
a need for standardization of procedures and protocols. Such 
activities generally come from learned societies in the form of 
guidelines. For comparison of PWV devices, the Society for 
Artery Research has published specific guidelines for device 
validation.291 There are tables for sample size (90 subjects 
selected with a minimum of 83 for data analysis), age range 
(at least 25 in the age ranges of <30, 30–60, >60 years), and 
exclusion criteria (eg, body mass index >30 kg/m2, absence 
of sinus rhythm, significant arterial stenosis). There is also 
a specific description of the order of measurements between 
the devices to avoid the possibility of systematic errors. The 
results of device/method validation studies should be pre-
sented using the method of Bland and Altman292 in which the 
difference between the values obtained with the 2 devices is 
plotted against the mean value of both devices. The plot then 

shows the mean of, and the difference between, the 2 meth-
ods or devices and includes ±2 SD as boundaries. Excellent, 
acceptable, and poor accuracy may be defined as shown in 
Table 2.291 Moreover, any systematic bias with respect to one 
method will be evident from the plot. Special consideration 
should be given to the issue of TD estimation because differ-
ent estimations between the devices will result in systematic 
overestimation or underestimation of cfPWV.

This protocol was recently used for the first time to validate 
a cuff-based device (SphygmoCor XCEL) for the detection of 
carotid femoral pulse TT, with the aim of providing cfPWV 
values similar to those obtained with a femoral tonometer.16 
When the cuff measurement of pulse TT was corrected for the 
distance between the femoral site and the position of the cuff 
on the upper thigh, both devices gave similar cfPWV (R2=0.9) 
with a mean difference of 0.02 m/s and an SD of 0.61 m/s.

The Problem of Noninvasive Estimation  
of TD for cfPWV Measurement
In the measurement of cfPWV, the major source of inac-
curacy lies in the determination of the TD of the pressure 
or flow waves.293 First, measurements on body surface may 
not reliably represent the true length of the aortic and arte-
rial segments, especially with obesity and when the arter-
ies become more tortuous with age.294 Second, by definition, 
cfPWV encompasses not only the aorta but also segments of 
the carotid artery and of the iliac and femoral arteries, which 
differ with respect to their elastic properties (and their local 
PWVs) from the aorta, even more so during aging. Moreover, 
the proximal part of the aorta (the most elastic one), which 
undergoes marked changes with aging,294 is not covered. 
Finally, by definition, cfPWV encompasses the travel of the 
pulse wave up to the carotid artery and down the thoracic 
aorta at the same time. Thus, this is not a simple unidrectional 
path length,129 thereby rendering all determinations of the 
“real” traveled path length somewhat elusive. Even sophis-
ticated MRI-based distance measurements are valid only on 
the assumption that the velocities in the carotid artery and 
in the thoracic aorta are the same, which actually may not 
be the case. In animals, PWV in the carotid artery can be 2 
to 3 m/s higher than in the aortic arch,295 and in humans, the 
differences between aortic and carotid stiffness are higher 
in patients with hypertension and DM.296 Whether these dif-
ferences can affect the actual cfPWV by 2% or up to 10% 
has been discussed recently.297 However, some standardiza-
tion is obviously necessary, and comparisons of cfPWV with 
invasive PWV and MRI-determined PWV have been made. 
In 135 patients undergoing invasive coronary angiography, 
the subtraction method (SSN–femoral artery minus SSN–
carotid artery) resulted in the smallest differences (0.2 m/s) 
between invasive aortic PWV and noninvasive cfPWW,282 
whereas the direct-distance method overestimated aortic 
PWV by 2.9 m/s. When the same TT (carotid-femoral TT 
derived from tonometry) was used and TD was measured 
with MRI (aortic arch to the femoral recording site minus 
carotid length from the origin to the recording site; again 
assuming equal velocities in carotid artery and aortic arch), 
the surface measurement closest to the MRI TD estimate 
was carotid-femoral minus SSN-carotid.294 In another study, 
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with MRI used as reference for TD measurement (ascend-
ing aorta–femoral artery minus ascending aorta–carotid 
artery), the best estimate, as measured on body surface, was 
carotid-femoral distance multiplied by 0.8.298 In all 3 stud-
ies, the direct carotid-femoral measurement led to a sub-
stantial overestimation of aortic PWV. Although conversion 
factors between the different cfPWV values obtained with 
different methods to assess TD are available from collab-
orative projects,131 this panel recommends the use of either 
the subtraction method (SSN–femoral recording site minus 
SSN–carotid recording site) or the 80% method (80% of the 
measured direct distance between the carotid and femoral 
recording sites) to estimate TD for cfPWV. Additionally, the 
use of calipers may improve distance measurements, particu-
larly in overweight or obese subjects.299,300

A comparison of the different methods and devices, 
accuracy, repeatability, and reproducibility is summarized in 
Section 6 in the online-only Data Supplement. In addition, 
a summary of the clinical validation, that is, which devices 
and techniques have been used in longitudinal clinical stud-
ies, again with a table, is provided in Section 6 in the online-
only Data Supplement. Finally, a more detailed discussion 
of devices that provide an estimate of PWV from waveform 
analysis or local arterial stiffness is also provided in Section 6 
in the online-only Data Supplement.

Validation of Devices to Measure baPWV
Repeatability and reproducibility can be investigated as usual, 
and such studies have been performed successfully.27,35 TD for 
baPWV obviously can only be estimated because there is of 
course no direct unidirectional propagation of pressure or flow 
from brachial artery to ankle. The formula used in the systems 
is based on anthropometric data from Asians, which may dif-
fer from data in Western populations. Although the traveled 
path with baPWV clearly differs from pure aortic (invasive) 
PWV and from cfPWV through the inclusion of longer seg-
ments of muscular arteries, comparisons with invasive PWV27 
and cfPWV301 have been made, showing a high degree of cor-
relation. For noninvasive validation studies, systems that have 
been shown to predict cardiovascular outcomes should be 
used such as the VP1000 (Omron Healthcare) and the Vasera 
(Fukuda Denshi; Section 2).

Validation of Devices Providing Estimates  
of PWV From Single-Point Measurements
There is some interest in techniques estimating aortic PWV 
from brachial cuff-based waveform analysis (and clinical 
characteristics), which would simplify the procedure. In 
addition to reproducibility, such devices should undergo 
invasive validation when claiming to estimate aortic PWV 
and noninvasive validation against gold-standard devices 
measuring cfPWV. To date, invasive validation has been 
performed successfully for the Arteriograph (Arteriomed, 
Budapest, Hungary)302 and the Mobil-O-Graph (IEM).31 
Clinical validation, that is, the prediction of cardiovas-
cular events, is pending for the Arteriograph. One small 
study in patients with chronic kidney disease, National 
Kidney Foundation stages 2 to 4, has already shown the 
independent prognostic value of an estimated aortic PWV 

(measured with the Mobil-O-Graph device) with respect to 
mortality.303

Section 7. Factors Confounding  
Arterial Stiffness Measures and Practical 

Interpretation of Values
Recommendations

7.1.    �MAP and heart rate should be recorded at the time 
of an arterial stiffness measurement and taken into 
consideration when PWV data are analyzed as po-
tential confounders (Class I; Level of Evidence B).6,304

7.2.    �The following are recommendations to enhance uni-
formity in arterial stiffness investigations:

       a.    �The sites of measurement, for example, carotid-
femoral, should be clearly stated in the Methods 
section (Class I; Level of Evidence C).

       b.    �It is reasonable to report how the distance mea-
surement was performed in the Methods sec-
tion (Class IIa; Level of Evidence C).

       c.    �It is reasonable to use calipers to obtain surface 
measurements to calculate distance for PWV 
(Class IIa; Level of Evidence C).

       d.    �Arterial stiffness measurements should be 
performed in duplicate in subjects in the su-
pine position after a minimum of 10 minutes 
of rest, controlling the environmental noise 
and temperature as much as possible; the ar-
terial stiffness measurement should be repeat-
ed a third time if the difference in the 2 mea-
surements is >0.5 m/s using the median value 
(Class I; Level of Evidence C).

       e.    �Operators performing arterial stiffness measure-
ments should be familiar with the equipment, 
should have been trained in the techniques, and 
should have demonstrated consistently repro-
ducible results (Class I; Level of Evidence C).

A number of physiological and methodological factors can 
influence and confound arterial stiffness indexes. These fac-
tors require due consideration to minimize their impact, to 
allow high-quality data to be obtained, and to allow correct 
interpretation of the data.

Physiological Confounders
The most significant physiological variable affecting arterial 
stiffness is the vessel distending pressure (MAP).3,304–306 In 
contrast, PP provides an indirect index of large-artery stiffness 
because it depends on large-artery compliance, together with 
stroke volume and the influence of reflected pressure waves. 
As MAP increases, vessels stiffen, but in a nonlinear manner. 
Therefore, the measured value of stiffness will depend on, or 
be confounded by, the MAP, which should be taken into con-
sideration. This is particularly relevant when populations with 
different BPs are compared or when the effects of antihyper-
tensive agents are investigated.

The relationship between heart rate and arterial stiffness 
is less well defined, with short-term studies showing positive 
associations,6,307,308 no association,309,310 or even inverse asso-
ciations311 between increased heart rate and various measures 
of arterial stiffness, including PWV. These disparate results 
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reflect the fact that at least some of the studies may have been 
confounded by concomitant changes in MAP. Nevertheless, a 
recent study312 demonstrated that, although heart rate exerts a 
minimal influence on PWV in the lower range of mean pres-
sure values, an increase in heart rate results in a modest but 
significant increase in PWV at higher MAP values. Because 
BP and heart rate vary considerably both within and between 
individuals, both should be taken into consideration when 
measurements of arterial stiffness are undertaken.

To minimize such confounding effects, arterial stiff-
ness should be assessed in a quiet, temperature-controlled 
environment. Participants should also refrain from alcohol, 
vasoactive medications, and vigorous physical activity ide-
ally for 12 hours and large meals, caffeine-containing food 
and drinks, and smoking for at least 2 to 4 hours before the 
measurements. It is important that participants are allowed 
to rest in the supine position for at least 10 minutes to ensure 
hemodynamic stability. For menstruating women, attention 
should be paid to studying these subjects at a similar men-
strual cycle phase.

Methodological Confounders
Although cfPWV is recognized as the gold standard for the 
noninvasive assessment of arterial stiffness,36 arterial stiffness 
often is measured in alternative (or additional) vascular beds. 
For example, several noninvasive commercial devices assess 
baPWV. Compared with the carotid-femoral vascular bed, the 
brachial-ankle vascular bed encompasses additional arterial 
territories with different characteristics, different determi-
nants of stiffness, and different influences of atherosclero-
sis. Conversely, invasive assessments of arterial stiffness and 
MRI-guided assessments of arterial stiffness often measure 
PWV across much shorter distances within the aorta. Indexes 
are not necessarily interchangeable, either physiologically or 
prognostically, and the methodology used should be clearly 
stated to assess PWV.

Even within a vascular bed, PWV may vary, depending 
on the specific device used to measure PWV. For example, 
Millasseau et al313 assessed cfPWV with 2 commercially 
available devices in the same individuals. They found that the 
2 devices yielded different values of PWV within the same 
individual. Importantly, the difference was attributable to the 
algorithm used by each device to derive the time of travel 
(foot-to-foot method with the SphygmoCor system versus 
maximum-slope method with the Complior system); thus, the 
same waveforms analyzed by the 2 devices could result in dif-
ferences in PWV values of 5% to 15%.

Perhaps the most important methodological confounder of 
PWV measurements is calculation of the wave TD (Section 
6). cfPWV is calculated as the distance traveled by the pres-
sure wave divided by the time delay between the arrival of the 
pulse wave at the carotid and femoral sites (wave TT). For 
measurement techniques other than MRI, the TD is typically 
estimated from surface measurements between the recording 
sites. These measurements should be as accurate as possible 
because small errors in distance measurement may translate 
into much larger errors in the calculated PWV, up to 30% in 
1 study,314 and the measurement method and vascular territory 
should be clearly stated.

A tape measure is generally used, although calipers better 
minimize the impact of body contours and therefore are rec-
ommended. Different approaches are used to calculate wave 
TD, although the most common methods are the direct dis-
tance between the carotid and femoral sites (direct method) 
and the distance between the SSN and carotid site subtracted 
from the distance between the SSN and the femoral site (sub-
tracted method), which better corresponds to the true anatomic 
distance assessed by MRI.298 Weber et al282 also found that the 
subtraction method was more closely related to true distance 
and that cfPWV determined with the device and the subtracted 
distance corresponded best to invasive assessment of PWV. 
Although a recent expert consensus document advised that 
distance should be calculated by multiplying the direct dis-
tance by 0.8 and conversion algorithms between the 2 meth-
ods have been developed,315 they are likely to introduce further 
error. Therefore, the method of distance calculation should be 
clearly stated, and the subtracted distance is more anatomi-
cally true (Section 6 recommendation). How the application 
of different methodologies will relate to differences in risk 
prediction remains unclear.

Practical Consideration in Making Arterial Stiffness 
Measurements
Whenever tonometry or ultrasonography systems are used 
for sequential recording of pressure or flow waves with ECG 
gating, care has to be taken that cardiac rhythm is stable. In 
the presence of arrhythmias, measurements may be unreliable 
because of different intervals from the R wave of the ECG to 
the foot of the traveling wave.

In addition to physiological and other confounders of arte-
rial stiffness measurements, there are a number of limitations 
associated with assessing arterial stiffness. Some of the tech-
niques are highly operator dependent; thus, adequate training 
for the individuals making the recordings must be provided 
to ensure that high-quality data are obtained. Therefore, a 
period of familiarization with the measurement techniques is 
suggested, after which the trainee should obtain high-quality 
recordings in a minimum of 20 individuals to determine com-
petency. In addition, the equipment required for these mea-
surements is often expensive and not portable, limiting the use 
of some techniques for measuring arterial stiffness to special-
ist research settings. This is especially the case for MRI- and 
ultrasonography-based approaches, although a number of por-
table ultrasonographic systems are now available.

Section 8: Future Needs in Arterial  
Stiffness Study

Understanding how aging, stiffness, and BP interact over time 
is a complex conundrum. Aging-associated arterial changes 
and changes associated with hypertension (and early ath-
erosclerosis and DM) are fundamentally intertwined at the 
cellular and molecular levels. In humans, other well-known 
risk factors (eg, excess food intake, altered dietary lipids and 
metabolism, smoking, and lack of exercise) likely interact 
with this arterial substrate that has been altered during aging, 
rendering the aging artery a “fertile soil” that facilitates the 
initiation and progression of these arterial diseases. Some 
lifestyle and pharmacological interventions have already 
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proved to be effective in preventing or ameliorating hyper-
tension associated with aging. Although a number of small 
studies have suggested that various lifestyle interventions 
may produce BP-independent decreases in cfPWV, to date, 
the best evidence available in terms of therapeutic interven-
tion suggests that angiotensin-converting enzyme inhibi-
tion may produce decreases in arterial stiffness beyond a 
BP-lowering effect.316,317 Much larger meta-analyses of indi-
vidual patient data will be required in the future to ensure 
that decreases in aortic PWV after therapy are truly BP inde-
pendent. The cellular/molecular proinflammatory mecha-
nisms driven by angiotensin II and other growth factors that 
underlie arterial aging are novel putative candidates to be 
targeted by interventions aimed at attenuating arterial aging 
and thus possibly attenuating the major risk factor for hyper-
tension and atherosclerosis.318

Future investigations of the importance of arterial stiffness 
should address questions such as these:

•	 Do age changes within the arterial wall drive the age-
associated increase in arterial stiffness, or does the in-
crease in arterial stiffness with advancing age result from 
the age-associated increase in systolic BP?

•	 What is the natural history of PWV and BP vis-à-vis the 
rate at which PWV and BP increase with age?

•	 Will prevention or reduction of aortic stiffening provide 
substantial health benefits?

•	 What are the targets for intervention in a focused attempt 
to alter the nature of the arterial wall?

•	 Is it possible and safe to unstiffen the aorta independent-
ly of a BP reduction?

•	 Can the similarities in aging and stiffening of the arterial 
wall in animal models be used to guide human interven-
tion trials, and will industry or peer review organizations 
consider these processes as potentially tractable and 
fund investigations into intervention trials? How would 
such trials differentiate the impact of a destiffening ap-
proach from a reduction in BP?

•	 Are there nondrug interventions that are likely to benefit 
arterial stiffening processes? At what age should such 
interventions be introduced?

Many of the above investigations will be facilitated by the 
development of cuff-based systems that will allow the mea-
surement of hemodynamic parameters such as cfPWV, central 
BP, and AIx with as much ease and operator independence as 

oscillometric sphygmomanometry. Such systems have already 
been validated and have the facility for 24-hour ambulatory 
assessment of central BP (eg, the Mobil-O-Graph covered in 
Section 2). A logical progression would be to measure cfPWV 
with non–cuff-based systems. Such systems are already in 
development.319

The establishment of international reference norms for 
PWV across age and BP strata,131 increasing recognition of 
the importance of central arterial stiffness as a consequence 
of aging and comorbidities,8,97 potential improvements in 
understanding study outcome mechanisms when these mea-
surements are incorporated,51,193 recognition of the limitations 
of these measurements, and a spirit of cooperation between 
device manufacturers, the pharmaceutical industry, regula-
tory sponsors, payers, investigators, practitioners, and patients 
are necessary foundational elements in moving this process 
forward.

In addition, there are several gaps in the understanding of 
arterial stiffness in children:

•	 Lack of validation of measurement devices in children
•	 Lack of sufficient normative data by age/body size/pu-

bertal status, sex, and race
•	 Lack of longitudinal data in healthy children and chil-

dren with risk factors (DM, hypertension)
•	 Linking of arterial stiffness measurements to established 

pediatric intermediate target-organ end points

As this summary statement was nearing the final draft 
stage, a large patient-level (n=17 635) meta-analysis of arte-
rial stiffness was published.10 This study lends more support 
to the growing interest in arterial stiffness.

Overall Summary
Measuring arterial stiffness has been established clinically 
through longitudinal studies in which it has independently 
predicted death and standard cardiovascular end points. A 
number of devices and approaches have been developed to 
assess this parameter, providing both challenges and oppor-
tunities for the advancement of this aspect of the science of 
hemodynamics. Wider appreciation of the role of arterial 
stiffness beyond BP levels in clinical medicine and clinical 
research is an ongoing journey, and its indication for use in the 
clinic requires further study. We hope this summary statement 
represents a step forward in this journey.
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SECTION 1:  Arterial stiffness and underlying mechanisms 
 
Authors:    Alberto Avolio, Julio Chirinos, Edward Lakatta 
 
 
1.0    What is arterial stiffness? 
 
1.0.A General definition of material stiffness; stress-strain relationships-linear, nonlinear; 
 clarify what arterial stiffness is not. 
 

The definition of arterial stiffness involves the fundamental mechanical behavior of the material 

properties of the artery wall as well as the effect of wall properties on arterial function (1). The 

material properties are defined in terms of the fractional deformation (strain) due to an applied 

force per unit area (stress). The ratio of uniaxial stress to uniaxial strain is defined as the elastic 

(Young’s) modulus (E), describing the stiffness of the material (2). For an isotropic material, E is 

constant in all directions. However, since arteries are essentially non-isotropic, E is not the same 

for circumferential or axial deformation (3). Conventionally, due to tethering, the deformation 

produced by the intra-arterial pressure (P) is considered to be mainly in the circumferential 

direction with change in diameter (D). Due to the cylindrical structure, the stress and strain can 

be represented by P and the fractional change in diameter (ΔD/D) respectively. Hence, for 

constant length, the volume elastic modulus (or Peterson’s elastic modulus, Ep) is defined as Ep 

= P/(ΔD/D (4)). The important aspect of Ep as a stiffness parameter is that pressure and diameter 

are measurable quantities, which can be assessed non-invasively. For a linear elastic (Hookean) 

material the relation of stress and strain is constant, and the material has a single value of elastic 

modulus. However, the material properties of the artery wall change with applied force, hence 

the value of elastic modulus depends on pressure and consequently the state of distension (non 

Hookean material) (5). This is described as the incremental elastic modulus (Einc), which is the 

tangent of the stress-strain curve at any specific point: Einc = ΔP/(ΔD/D) (Figure 1.1). 

 

For any circular elastic structure, the circumferential wall tension (T) is related to the internal 

pressure by the Law of Laplace (T = P.D/2), assuming the wall thickness (h) is much smaller 

than D. Since the circumferential stress (S) is T/h, hence ΔS =ΔP.D/2h. The incremental stress, 

ΔS will cause an incremental circumferential strain equivalent to ΔD/D. Thus Einc = 

ΔP.D2/(2hΔD).The quantity ΔP/(ΔD/D) describes the bulk elastic modulus (K) for a given length 
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of vessel. Since, from basic principles of wave propagation in elastic media, pulse wave velocity 

(PWV) is related to bulk elastic modulus and blood density (ρ) [PWV = (K/ρ)1/2] (1), the Moens-

Korteweg relation is obtained which relates PWV to wall stiffness and geometry of the arterial 

cylindrical structure: PWV = (Einc.h/Dρ)1/2. This suggests that for a uniform arterial segment, 

PWV can be used as a surrogate of arterial stiffness, with the assumption that the relative wall 

thickness (h/D) remains constant. 

 

The basic concepts outlined above have been developed and treated in early fundamental studies 

of arterial mechanics using isolated arterial segments assessing static and dynamic properties (2), 

pressure dependency of elastic properties (5;6), effect of smooth muscle activation (7). Recent 

studies and reviews have addressed the various indices of arterial stiffness that can be derived 

from measured quantities, essentially pressure and diameter (4;8;9). These studies provide 

extensive tabulated formulas and definitions. 

 

1.0.A.i.  Surrogate measures of arterial stiffness – and what arterial stiffness is not  

 

Whereas arterial stiffness is explicitly defined in terms of arterial properties, surrogate measures 

related to pulse wave propagation are extensively used. The use of PWV is justified from basic 

relationships between physical quantities as expressed in the Moens-Korteweg relation (above). 

However, the use of systolic pressure augmentation (described as augmentation index (AIx)) as a 

surrogate of arterial stiffness requires particular clarification. AIx is computed from the pressure 

waveform using the pressure value at the first systolic shoulder (P1) above diastolic pressure 

(Pd) and relating the difference between systolic pressure (Ps) and P1: AI = (Ps-P1)/(Ps-Pd). 

The conceptual association between AIx and arterial stiffness is related to a stiffer vasculature 

having a higher PWV resulting in reflected waves arriving earlier in systole producing a higher 

relative a pressure augmentation. This mechanism does indeed play a role, but the degree of 

augmentation is also related to the intensity of peripheral wave reflection. Hence AIx cannot be 

used as a surrogate solely of arterial stiffness given the associated hemodynamic confounders. 

Furthermore, it is highly sensitive to heart rate (10). 

 
1.0.B Application to material of artery wall; load bearing components; problems with 
 heterogeneous properties of the arterial wall 
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The main load bearing components in large conduit arteries are elastin and collagen, with a much 

lower contribution by smooth muscle in the muscular arteries. Due to the anatomical 

arrangement of the elastin and collagen fibbers, elastin engages at low distension (hence at low 

pressure) and collagen and higher distension (and pressure) (11). However, although the lamella 

unit is proposed as being the fundamental structural element of elastin in the media of the artery 

wall (12), there is significant variation in human arteries compared to other species (13). In 

addition, there is substantial variation in the isotropic properties (6) and the contribution to wall 

stiffness of elastin and collagen along the aortic trunk (14). The adaptation seen with change in 

function is evident as the design of load-bearing components is optimized to minimize the 

amount of collagen recruitment and so stiffness, as is a necessary function in diving mammals 

(15). 

 
1.0.C Non-linear stress-strain makes stiffness dependent on distension (i.e. arterial 

pressure). 
  
 
An inherent feature of the mechanical properties of arteries is that the wall becomes stiffer with 

distending pressure (5). This is due to the increased amount of recruitment of stiffer collagen 

fibers with increasing distension. That is, the relationship of stress (pressure) and strain 

(diameter) is non-linear, with concavity toward the distension axis, such that there is diminishing 

distension with increasing force. Under stable conditions, the wall tension (T) is balanced by the 

transmural pressure (P) and diameter (D)  (T = P.D/2r; as determined by Laplace’s Law). The 

non-linear pressure-diameter relationship ensures that the linear tension-diameter relationship 

intersects at a single point on the pressure-diameter curve for a given pressure. This property is 

essential for the efficient mechanical operation of arteries as conduits for blood such that, with 

the maintaining of residual stress, the vessels do not collapse, and so always ensure patency for 

blood flow. Indeed, the non-linear elastic behavior of arteries has been described as a 

fundamental evolutionary property of arterial design for all vertebrates and invertebrates with 

closed circulatory systems (16). 

 

1.0.D  Hemodynamic effects of arterial stiffness  
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Arterial stiffness is a major determinant of vascular impedance, hence affecting the relationship 

between arterial pressure and flow (1). Since flow is determined by the local spatial (x) pressure 

(p) gradient (dp/dx), and the relationship between time (t) derivative of pressure, (dp/dt) and 

dp/dx is dx/dt (that is, wave velocity) the effect is that local wave velocity becomes a determinant 

of the instantaneous relationship between pressure and flow. For elastic conduits, the wave 

velocity is related to the stiffness of the wall through the Moen-Korteweg relationship (see 

Section 1.0.A.i). Thus, a stiffer wall will result in decreased vessel compliance, since a given 

increase in volume will generate a larger pulse pressure. That is, changes in wall stiffness will 

modulate the time-dependent relationship between pressure and flow rate.  This is then expressed 

as changes in the frequency spectrum of arterial impedance (1). 

 
1.0.D.i  Effects on blood storage (compliance); determinant of pulse pressure 
 

In a closed circulatory system, blood is stored in distensible compartments, with the venous 

system being responsible for buffering slow and relatively large changes in volume. However, 

the arteries, with the residual wall stress and elastic walls, are also able to buffer rapid changes in 

blood volume, such as occur during a single cardiac cycle. Hence, the value of elastic modulus of 

the artery wall is such that there is sufficient recoil so that the volume taken up during systole is 

returned during diastole, hence buffering the pressure due to pulsatile ejection. Thus increases in 

arterial stiffness will generate higher pulse pressure (PP) for similar stroke volumes (SV). Since 

the SV is the volume taken up by arterial distension and that flowing through the peripheral 

resistance (R), the ratio SV/PP is related to the total arterial compliance (C). In terms of arterial 

design, arterial stiffness is matched to obtain a value of C so as to optimize blood volume in the 

arterial compartment. For example, for maximal damping of PP, a large value of C would be 

required for a given SV, that is, a highly distensible system. However, this would store large 

volumes with slow time constant (the product RC) for recoil, and so would result in an inefficient 

circulation because of high inertia due to large blood mass to be displaced. These concepts are 

quantified in terms of the lumped parameter Windkessel  model of the arterial system, consisting 

of a resistance (R) and a capacitor (C), and extended to a three element model by the addition of 

the characteristic impedance (Zc) (17). The model has been recently used to compute the 

intrinsic reservoir pressure due to the increase in aortic volume associated with cardiac ejection 

(18). 
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1.0.D.ii  Effects of wave propagation – Pulse Wave Velocity- surrogate measure of arterial 
stiffness 
 

Although the Windkessel model is adequate for lumped parameter estimation, it does not account 

for the finite time travel of the arterial pulse (17). This requires a spatially distributed system 

which is described in terms of wave propagation characteristics. Arterial stiffness affects PWV 

through the constitutive relation of wall stiffness, vessel geometry and blood density (Moens-

Korteweg equation). In the large conduit arteries the small ratio of wall thickness in relation to 

diameter (h/D) makes changes in the material stiffness of the artery highly correlated with 

measured PWV. This is manifest by the similar nonlinear dependency of PWV on distending 

pressure. Hence the measurement of pulse propagation time over a known distance to compute 

PWV has been found to be a robust surrogate of arterial stiffness, in the absence of any 

confounding arterial malformation such as significant stenosis (9). 

 

1.1  Mechanisms of arterial stiffness 
 

Stiffening of arteries is generally associated with changes in the mechanical properties of the 

arterial wall. That is, alterations of stress/strain characteristics due to modification of properties 

of load-bearing structural components. The underlying mechanisms responsible for such 

modifications involve a complex interaction between the material properties of connective tissue 

and cell signaling pathways that alter the intrinsic and combined function of elastin, collagen, 

proteoglycans and glycoproteins of the extracellular matrix of the artery wall. A number of 

reviews address these issues (19-21), with the suggestion that the specific mechanisms can 

interact by way of positive or negative feedback pathways, depending on the extend of the 

stimulus (22).  

 

Essentially, the underlying mechanisms can be considered as those related to elementary material 

properties, that is, “passive” mechanisms, and those that are regulated by cellular and molecular 

signaling where pathways can be interrogated, that is, “active” mechanisms. 

 
1.1.A   “Passive” mechanisms 
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1.1.A.i.  Mechanical properties related to intra-arterial distending 
 
The interaction of the loading function of the various wall components that bear the wall tension 

due to the distending pressure produces non-linear wall mechanical properties such that the wall 

becomes stiffer with increased distension. That is, the stiffness becomes pressure dependent (5). 

This is an important and intrinsic property of arterial design (16;23). Since an increase in 

distending pressure leads to an increase in stiffness, which then can potentiate a further increase 

in pulse pressure, this property constitutes a potential positive feedback mechanism (22) in 

relation to the relevance of arterial stiffness to cardiovascular risk, given the importance of 

systolic pressure, especially in age-related isolated systolic hypertension. 

 

1.1.A.ii  Effects of mechanical fatigue and fracture of elastin structures 
 
All structural proteins in biology have elastic characteristics, with some rubber-like proteins (e.g. 

elastin, resilin) functioning with high resilience, large deformability (strains) and low stiffness, 

resulting in the ability to store elastic-strain energy (24). In arteries, this is a characteristic of 

both elastin and collagen, although elastin is much more extensible at lower strains than 

collagen. However, just as the efficiency of resilin determines the performance of insect wings 

during their lifetime (25), the efficiency of elastin is also a significant determinant of the overall 

stiffness of the arterial wall throughout life. From evolutionary considerations, it is reasonable to 

assume that the range of properties of elastic proteins will predispose elastic structures that are 

subjected to repetitive strains to a high resistance to fracture.  

 

Due to the pulsatile nature of circulatory design, arteries are subjected to continuous and 

repetitive strain throughout life. In human tissue, radiocarbon prevalence data shows a range of 

half-life of 40-174 years (mean of 74 years) (26), making elastin the protein in the human body 

with the longest longevity.  Having such a stable form with minimal turnover, the question is 

whether it can be subjected to the mechanical degradation effects of fatigue due to repetitive and 

unceasing strain throughout life. Such concepts are advanced as a mechanism of arterial stiffness 

due to elastin degradation, given the 30 million cycles per year to which the arteries are exposed 

(21) and so passive elastin degradation occurs with age, as distinct from active enzymatic 

processes (due to matrix metalloproteinase activity) (27). Evidence of increased degree of 
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disorganization and fracture of aortic elastin associated with the total number of cardiac cycles 

throughout life was found in a cross-sectional study of a range of species with a wide range of 

body size, heart rate and life span (28). This is complemented by structural alterations due to 

embryonic abnormalities affecting the structure of elastin throughout life, with increased 

predisposition to elevated arterial stiffness and associated cardiovascular risk (29).  This has been 

recently confirmed in the aorta of mice with elastin haploinsufficiency where increased aortic 

stiffness precedes elevation of blood pressure during postnatal development (30). Other evidence 

of possible effects of fatigue on aortic elastin is obtained from the association of fragmentation 

and reduction of interlamellar fibers and the formation of aortic dissecting aneurysms (31). 

Recent investigations in the role of elastin in arterial stiffness of large arteries have suggested 

means of reversing alterations to elastic fibers as a therapeutic treatment for hypertension (32). 

 
1.1.A.iii  Effects of heart rate 
 
The cardiovascular risk associated with elevated heart rate has been shown to be comparable to 

that associated with increased arterial pressure, where a 20% increase in cardiac death is 

associated both with a rise in heart rate of 10 beats/min, or an increase in systolic pressure of 10 

mmHg (33). Although the underlying causes are mainly related to increased sympathetic activity, 

there is also evidence that elevated heart rate is independently associated with increased 

progression of arterial stiffness as measured by aortic pulse wave velocity (34). Underlying 

mechanisms for the association have been investigated in experimental conditions in paced 

human subjects (35;36) as well as in rat models (37;38) and where interventions were controlled 

for changes in arterial pressure (39). The effect has been suggested to be due to the viscoelastic 

properties of the arterial wall (40;41). 

 
1.1.B  “Active” mechanisms  
 
Mechanisms of arterial stiffness associated with cellular and molecular processes have the 

potential for pharmacological interrogation of biochemical pathways. However, whereas the 

mechanical, structural and hemodynamic correlates of arterial stiffness that constitute the 

‘passive’ mechanisms are well established (1), the biochemical pathways that constitute possible 

‘active’ mechanisms and that lead to increased functional stiffness of the artery wall are not as 

well defined, although there is increasing interest across a range of fields in elucidating specific 
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molecules that may play a significant role (42). There is evidence that similar mechanisms are 

involved in vascular aging (27;43) and inflammation (44;45). Although specific evidence in 

humans is yet to be fully established, there is increasing evidence in experimental animals, 

comprised mainly of rodent models, of the modification of the extracelluar matrix through 

cellular, molecular, neurogenic and neuroendocrine pathways some of which may be potentiated 

by genetic mechanisms. 

 
1.1.B.i  Cellular  Mechanisms 
 
In the artery wall, the cellular mechanisms related to arterial stiffness are mediated by 

endothelial cells and smooth muscle cells. The description below does not relate to the effect of 

the cells per se to the wall stiffness, but rather the pathways associated with modification of the 

structural integrity of the arterial media, leading to modifications of functional stiffness of the 

arterial conduit. 

  
1.1.B.i.a.   Role of the endothelial cell in arterial stiffness 
 
The interface of the endothelial cell layer with flowing blood predisposes the function of the 

endothelial cell to hemodynamic forces which have been shown to potentiate gene expression at 

the level of transcription (46). Hemodynamic forces are associated with modification of the 

artery wall through phenotypic alterations of endothelial and smooth muscle cells through 

complex mechanotransduction receptor mechanisms (47). Genetic expression has also been 

shown to be affected by the amount of pulsatility contributing to oscillatory shear. In cultured 

bovine aortic endothelial cells, the mRNA expression of Endothelin-1 (ET-1) and endothelial 

nitric oxide synthase (eNOS) has been shown to depend on both time and amplitude of 

mechanical force (48). These studies showed that compared to unidirectional shear, oscillatory 

shear stress combined with pressure upregulates transient expression of ET-1 while at the same 

time downregulating eNOS. Since arterial stiffness is associated with pulse pressure, this 

mechanism could constitute a potential positive feedback mechanism where downregulation of 

eNOS and upregulation of ET-1 could further increase wall stiffness, leading to increase in 

oscillatory sheer stress and so amplifying the effect of wall stiffness. Although limited, there is in 

vitro experimental evidence of this from cells cultured in tubes of different compliance where it 
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was demonstrated that increased wall stiffness is associated with reduced endothelial Akt-

dependent eNOS phosphorylation (49). 

 

The association of endothelial dependent reduction of nitric oxide (NO) and increased arterial 

stiffness has been demonstrated in vivo in the iliac artery of sheep (50) and humans (51). These 

experiments were conducted in a segment of vessel where the local effects of altered endothelial 

function could be quantified independent of effects of intra-arterial distending pressure. Similar 

experiments demonstrated the effects of ET-1 in potentiating elevation of larger artery stiffness 

which can be reversed by blockade of the ET(A) receptor (52). Natriuretic peptides have also 

been shown to affect local iliac artery stiffness in the sheep via the Natriuretic Peptide Receptor 

Type A (NPRA) receptor (53). 

 
1.1.B.i.b.  Role of the vascular smooth muscle cell in arterial stiffness 
 
In addition to the important role of vascular smooth muscle in regulation of vascular tone 

affecting peripheral resistance, the contractile properties of the vascular smooth muscle cells 

have a measurable effect on mechanics of the arterial wall of large conduit arteries (41;54;55) 

with suggestions of regulation of energetics of viscous damping (56). However, there is a large 

body of literature spanning some 5 decades on the biology of smooth muscle cell phenotypic 

modulation, where the cell exists in a number of phenotypic states which depend on specific 

adaptive functional demands (57). 

 

In relation to arterial stiffness, an important phenotypic change is the functional 

transdifferentiation leading to osteogenesis causing deposition of calcium in the media of the 

arterial wall (58). The increase in arterial calcium deposition has been related to decreased bone 

mineral density (59) and recent evidence has been obtained from the Baltimore Longitudinal 

Study of Aging that in women, there is an inverse relationship between arterial stiffness and 

cortical bone area, independent of age and blood pressure (60). The compounding effect of 

calcification is that facture of elastin fibers is associated with the signaling pathway for smooth 

muscle cell transdifferentiation (59) and that the downstream effect is elastocalcinosis resulting 

in increased wall stiffness (61;62). 
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In experimental investigations, increase in arterial stiffness mediated through calcification is 

associated with administration of vitamin D and nicotine (61;63). Vitamin D has also been found 

to be an independent correlate of arterial stiffness in patients with peripheral arterial disease (64). 

Elevated calcification is also a hallmark of chronic kidney disease in Lewis polycystic kidney 

(LPK) rat models. LPK rats showed a 6-8 fold increase in aortic calcification with 33% increase 

in aortic pulse wave velocity and 20% reduction in elastin density (65). Although vascular 

calcification is potentiated by phenotypic changes in the vascular smooth muscle cell, tissue 

transglutaminase 2 (TG2) has been shown to be necessary for programming chrono-osseous 

smooth muscle cell differentiation in response to increased bone morphogenic protein (66). 

Recent studies have also identified other pathways which affect smooth muscle cells to 

potentiate vascular calcification. Calpain-1 has been shown to regulate metalloproteinase 2 

(MMP2) activity affecting age-related calcification and fibrosis (67). A mineralocorticoid 

receptor, usually thought to be present in the kidney, has recently been identified in vascular 

smooth muscle, suggesting a possible regulatory role in smooth muscle function (68). 

 
1.1.B.ii  Molecular Mechanisms 
 
1.1.B.ii.a.  Extracellular Matrix 
 
Molecular mechanisms that alter the stiffness of the extracellular matrix (ECM) of the artery wall 

are connected with aging, involving changes in the structural proteins, elastin and collagen that 

are manifest as protein side-chain modification and intermolecular cross-linking (69). Whereas 

cross-linking involves enzymatic changes during developmental phases, aging involves non-

enzymatic processes with glucose, leading to advanced glycation end-product (AGE) formation. 

In arteries, AGE formation in the ECM leads to increased stiffness, and it has been shown that 

non-enzymatic breaking of AGE crosslinks can improve arterial compliance and reduce pulse 

pressure in the elderly, as well as improving cardiac function (70;71). Recent studies question 

whether existing cross-links are actually cleaved by AGE breaking agents such as alagebrium 

(ALT-711), although these agents can act as inhibitors of metal-catalyzed AGEs (72). ECM 

remodeling is also modulated by the expression of MMPs due to effects of hemodynamics, 

oxidative stress and inflammation (73). The role of cardiotropin-1, a member of interleukin-6, in 

promoting fibrosis in the ECM leading to increased arterial stiffness has also recently been 

described (74). 
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1.1.B.ii.b.  Protein post-translational modification: S-Nitrosylation 
 
The process of S-nitrosylation involves post-translational modification mediated by nitric oxide 

(NO) through cyclic GMP independent pathways where a protein cysteine thiol undergoes 

covalent modification by an NO group and generates an S-nitrosothiol (SNO) (75).The S-

nitrosylation process of the tissue transglutaminase protein type 2 (TG2) has been shown to be 

involved in the calcium-dependent TG2-mediated modification of the vascular extracellular 

matrix through formation of collagen cross-linking,  affecting  wall  stiffness (76). The 

endothelial production of NO produces a   cyclic   redox-dependent S-nitrosylation and 

denitrosylation of TG2 (75). The reduced S-nitrosylation (and therefore increased 

denitrosylation) of TG2 that takes place with reduced production or bioavailability of NO  (e.g.  

due  to  endothelial  dysfunction)  causes exteriorization of the protein to the extracellular space. 

Increased activity of matrix TG2 has been  shown  to  be associated with increased aortic PWV 

in TG2 knockout mouse models (77). Studies   in   ageing   rats   and   TG2   and   eNOS 

knockout  mice  models  have  shown  that  reduction  of bioavailability of NO as occurs with 

ageing, inflammation and endothelial dysfunction in general is associated with cellular  

mechanisms  contributing  to  arterial  stiffness (78) . 

 

1.1.C  Neurogenic Mechanisms 
 
Investigations addressing the  neurogenic influence  of stiffness of  large  arteries through the 

effect of smooth muscle tone have been  varied  and  have  produced  inconsistent  results  in 

terms of quantifying the intrinsic neurogenic effect on the smooth  muscle  as  separate from  the 

passive  mechanical stretch   effect   due   to   concomitant   pressure   changes. Studies   

simulating   the neurogenic  effect  by  administration  of  neurotransmitter substances  have  

demonstrated  increased  aortic  PWV  in anaesthetized dogs (79) and wall stiffness changes 

measured by  pressure/diameter  relations  in  conscious  dogs (80) and vagotomised cats (81) 

Studies in rats have also been confined to  measurement  of  specific  sites  (carotid  and  femoral 

arteries) and have not explicitly addressed the effect on the aortic trunk (82;83), in terms of 

functional stiffness determining pulse pressure. Recent studies in humans have shown an 

independent association between  aortic  PWV  and muscle sympathetic nerve activity (84;85).  
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1.1.D  Neuroendocrine Mechanisms 
 
Early studies on cardiovascular effects of angiotensin converting enzyme (ACE) inhibition 

suggested a role of angiotensin II in cardiac and vascular remodeling independent of the passive 

effects of arterial pressure (86). The remodeling of the extracelleular matrix affecting arterial 

stiffness involves ACE inhibition preventing medial accumulation of collagen mediated by 

inhibition of angiotensin II through the AT1 receptor (87). Recent studies have associated the 

age-related changes in the arterial wall with angiotensin II signaling in complex pathways 

involving calpain-1, transforming growth factor-beta1, MMP 2 and 9, monocyte chemoattractant 

protein-1, NADPH-oxidase, and reactive oxygen species. Increased angiotensin II signaling has 

also been shown to induce the accumulation of collagen and advanced glycated end-products and 

elastin degradation (88). 

 
In the LPK models of chronic kidney disease, it was shown that the increase in aortic stiffness 

was associated with a 6-fold increase in aortic calcium content (65). ACE inhibition by 

perindopril in the LPK rats  

reduced the accumulation of aortic calcium during development as well as reducing the degree of 

elastin degradation and collagen content. In spontaneously hypertensive rats, early ACE 

inhibition for a brief period of only 4 weeks was associated with persistent reduction of isobaric 

wall stiffness (89). 

 

Direct angiotensin receptor blockade (ARB) is associated with hemodynamic effects consistent 

with reduction of arterial stiffness and peripheral wave reflection (90). ARB also potentiated the 

reduction of arterial stiffness in combination with ACE inhibition in chronic disease (91). ARB 

is associated with blockade of the angiotensin II type 1 receptor. However, recent studies which 

have addressed the type 2 receptor have shown that chronic stimulation was associated with 

reduced aortic stiffening and lower collagen accumulation. This occurred without preventing 

hypertension in rats in which NO synthase was inhibited. The effects of type 2 receptor 

stimulation were additive to angiotensin II type 1 receptor blockade (92). 

 

1.1.E  Genetic Associations 
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The use of high density array single nucleotide polymorphism technology is enabling the 

identification of gene variants associated with markers of vascular function. Perusal of genome-

wide association studies (GWAS) is uncovering groups of genes affecting NO pathways, MMPs, 

matrix elastin structure, endothelin receptors and inflammatory molecules (93). Specific 

associations with cfPWV have been found in a gene locus associated with gene enhancers related 

to increased stiffness as measured by PWV (94). Studies in specific populations, such as African 

Americans, have not yet yielded specific genes, although it is estimated that some 20% of the 

variance in arterial stiffness is inherited. However, in comparison to the genetic information 

obtained by GWAS techniques, studies of congenic strains of rats might have increased power 

for genetic identification.  A recent study in a congenic strain of rats for the identification of 

quantitative trait loci for blood pressure has shown that the female blood pressure quantitative 

trait locus has been narrowed to a range of less than 7 Mbp in chromosome 5 (95).  Although this 

was shown for systolic and diastolic pressure, it was not related to pulse pressure, hence it is not 

known if the association can be extended to arterial stiffness. 

 

1.2  Arterial stiffness as manifestation of vascular aging 

 

The most significant parameter that alters stiffness of conduit arteries is arterial aging (27;96). 

Arterial aging has a complex association with the overall burden of vascular disease (43), in 

different populations (97) and with associated cardiovascular risk (98). Indeed, recent reviews on 

the subject focus on the association between vascular aging and the broad spectrum of co-

existing conditions associated with cardiovascular disease, such as hypertension, diabetes and 

metabolic syndrome and the management strategies of vascular aging (99). 

 

1.2.A  Potential arterial wall targets to prevent, delay or ameliorate age-associated 

increases in Arterial Stiffening and predominately systolic hypertension 

Age-associated remodeling of the aortic wall arterial cell and matrix of both animals and humans 

involves a proinflammatory profile (100) (Figure 1.2). This profile features increased production 

of angiotensin II (Ang II) and increased vascular smooth muscle cell expression and secretion of 

downstream Ang II/AT1, mineralocorticoid and endothelin receptor signaling molecules (Figure 

1.3) e.g., MMPs, calpain-1 and monocyte chemoattractant protein (MCP-1), transforming growth 
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factor β1 (TGF-β1) NFκb, TNFα, iNOS, and VCAM. Activation of calpain-1, MMPs, TGF-β, 

and NADPH oxidase within the arterial wall is increased, and nitric oxide bioavailability is 

reduced (98;100-103). Invasive, proliferative and secretory capacities of early passage vascular 

smooth muscle cells (VSMC) isolated from the aged arterial wall are increased, and are linked to 

augmented Ang II signaling. This age-associated arterial proinflammatory secretory profile 

within the grossly appearing arterial wall and related structural/functional remodeling of cells 

and matrix is reproduced in young rats by chronic infusion of Ang II (104).  

 

1.2.A.i  Milk Fat Globule E8 (MFGE8) 

A comprehensive quantitative proteomic study to analyze aortic proteins from young (8 months) 

and old (30 months) rats identified 50 proteins that significantly change in abundance with aging 

(105). One novel discovery was that milk fat globule E-8 (MFGE8; aka lactadherin or SED1) a 

pivotal relay element within the angiotensin II/MCP-1/VSMC invasion signaling cascade 

(Figures 1.3, 1.4), increases with age. Additional transcription and translation analyses in aortae 

of other mammalian species including humans demonstrated that MFGE8 mRNA and protein 

levels increase with aging of milk fat globule EGF-8 protein (MFGE8) also accumulates within 

the context of arterial wall inflammatory remodeling in hypertension, diabetes mellitus, or 

atherosclerosis (106). MFGE8 induces VSMC invasion and proliferation, both salient features of 

arterial inflammation (105;106) (Figures 1.3, 1.4).   Chronic infusion of Ang II into young rats 

increases aortic MFGE8, MCP-1 and PCNA, an index of cellular proliferation, to levels in 

untreated old rats (104). 

 

1.2.A.ii  Aortic Amyloid Deposition 

1.2.A.ii.a.  Characteristic Features and Pathophysiology of Amyloid Proteins 

 

Misfolding of extracellular protein to form amyloid deposits is a dynamic process, occurring in 

parallel with, or as an alternative to physiologic folding, generates insoluble protein aggregates 

that are deposited in tissues (107). The incidence of aortic amyloidosis in subjects over 40 years 

of age averaged 79% in 224 autopsy cases.  The incidence prior to the 5th decade was 51% and 
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reached 95% by the 8th decade.  The aortic media exhibited the majority of amyloid deposition, 

which consists of numerous minute deposits without a relationship to atheromata (108).  

Amyloid has been defined, and specific amyloid types are defined, on the basis of its assembled 

protein fibril patterns. Initially, localized amyloid deposits, limited to certain organs or tissues, 

were regarded as innocent bystanders, or by-products of diseases, rather than having involvement 

in their pathogenesis. This view has changed radically during the last decade (109). Small 

amyloid deposits, or oligomeric preamyloid aggregates of specific amyloid fibril proteins, are 

now believed to be critical factors toxic cellular effects involved in the pathogenesis of common 

disorders, e.g. the amyloid b-peptide (Ab) in Alzheimer’s disease and islet amyloid polypeptide 

(IAPP) in type II diabetes (109). Although mechanisms by which protein aggregates lead to cell 

injury and death are poorly understood, and fibrils are potential cytotoxins (110), ß sheet 

peptides (e.g., amyloid ß) are known to form ion channels in lipid bilayers possibly through 

aggregation, though the channel structure is not clear (111).  

1.2.A.ii.b.  Medin Amyloid (AMed)  

Analysis of proteins extracted from amyloid-rich aortic media detected an amyloid protein called 

medin (112). Milk fat globule protein E8 is the precursor protein of medin amyloid, which 

becomes deposited in the aortic media in almost 100% of the Caucasian population over 50 years 

of age (113). Medin amyloid (AMed) is not restricted to the aorta and the temporal artery but 

also occurs in other arteries, mainly in the upper part of the body, including intracranial vessels 

(113). Medin amyloid deposits also contain its parent molecule, MFGE8. The medin fragment is 

5.5 kDa and derives from the C2-like domain of MFGE8 (114). The C2-like domain has been 

shown to bind phosphatidylserine and the RGD motif binds αvß3 and αvß5 integrins (113-115).  In 

vitro, medin forms amyloid-like fibrils and the last 18–19 medin amino acid residues are the 

aggregation-prone region (116). The two C-terminal phenylalanines may also favor amyloid 

formation (116).  

In human aortae, medin amyloid co-localizes with elastic fibers of arteries (117) and is also 

associated with other elastic structures (113). There is some evidence to indicate that non-

amyloid prefibrillar medin oligomeric aggregates may also be toxic to the surrounding cells. In 

vitro aggregated medin induces death of aortic smooth muscle cells, and cells incubated together 

with medin increased the production of MMP-2, i.e. a protease that degrades elastin and collagen 

(112).  
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Elastic fibers become arranged and anchored by a scaffold protein, fibulin-5. Fibulin-5–/– mice 

display aortic abnormalities due to disorganized and fragmented elastic fibers (118;119).  Since 

MFGE8  promotes RGD motif-dependent cell adhesion(120) and binds to elastin, has been 

suggested that MFGE8, like fibulin-5 (118), is involved in organizing elastic fibers to cells (113). 

Both medin and MFGE8 bind to tropoelastin in a concentration-dependent fashion. It has been 

suggested that the medin domain mediates the MFGE8-tropoelastin interaction is a cell adhesion 

protein and its medin domain may connect smooth muscle cells to the elastic fibers of arteries 

(113). Given that both medin and MFGE8 interact with elastic fibers, elastin may be an 

important component in the formation of medin amyloid (113). It is believed medin may be a 

factor involved in the increased aortic stiffness that accompanies advancing age (113;117). 

Indeed, correlations between serum MFGE8 and PWV and cardiovascular risk factors have been 

observed older normal subjects and in elderly patients with type 2 diabetes mellitus (121). 

Thus the age-associated increase in MFGE8 is a novel pivotal relay element within the 

angiotensin II/MCP-1/ERK/CDK4/VSMC invasion and proliferation signaling cascades, and 

medin amyloid production. Targeting of MFGE8 within this signaling axis pathway (Figure 1.4) 

is a potential novel therapy to reduce or delay age-associated arterial stiffening and inflammation 

that are also featured in diseases that become rampant at older ages, such as atherosclerosis and 

hypertension.  

Central arterial fibrosis and calcification, features of age-associated arterial extracellular 

remodeling, are also linked to Ang II signaling. Angiotensin II induces MMP2 and calpain-1 

expression and activity in the arterial wall (67;122) (Figures 1.3, 1.5). Cross-talk between these 

two proteases, calpain-1 and MMP2, leads to secretion of active MMP2, which modulates ECM 

remodeling via enhancing collagen production and facilitating vascular calcification (Figure 1.5). 

Thus, these molecules are new molecular candidates to retard age-associated ECM remodeling 

and its attendant risk for hypertension and atherosclerosis. 

Age-associated central arterial remodeling involving arterial wall collagen deposition and elastin 

fragmentation are linked to the age-associated increase in arterial pressure. As noted in Figures 

1.2 and 1.3, this arterial remodeling is linked to proinflammatory signaling, including 

transforming growth factor- β1, monocyte chemoattractant protein 1, and proendothelin 1, 

activated by extracellular matrix metalloproteinases (MMPs) and orchestrated, in part, by the 

transcriptional factor ets-1 (Figure 1.6).  
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Recent studies demonstrate that inhibition of MMP activation can decelerate the age-associated 

arterial proinflammation (123). Chronic administration of a broad-spectrum MMP inhibitor to 

16-month–old rats for 8 months (Figure 9.8) resulted in (1) inhibition of the age-associated 

increases in aortic gelatinase and interstitial collagenase activity in situ; (2) preservation of the 

elastic fiber network integrity; (3) a reduction of collagen deposition; (4) a reduction of 

monocyte chemoattractant protein 1 and transforming growth factor- β1 activation; (5) a 

diminution in the activity of the profibrogenic signaling molecule SMAD-2/3 phosphorylation; 

(6) inhibition of proendothelin 1 activation; (7) downregulation of expression of ets-1; and (8) 

markedly blunted the expected age-associated increases in arterial pressure (Figure 1.7). 

Collectively, these results indicate that MMP inhibition retards age-associated arterial 

proinflammatory signaling, and this is accompanied by preservation of intact elastin fibers, a 

reduction in collagen, and blunting of an age-associated increase in blood pressure.  

 

A MEGACEPT EMERGES WITH THE REALIZATION THAT IN ARTERIES OF 

YOUNGER ANIMALS, IN RESPONSE TO EXPERIMENTAL INDUCTION OF 

HYPERTENSION OR EARLY ATHEROSCLEROSIS OR DIABETES, PARTS OF THIS 

PROINFLAMMATORY  PROFILE WITHIN THE ARTERIAL WALL THAT HAVE 

BEEN STUDIED TO DATE ARE STRIKINGLY SIMILAR TO THE PROFILE THAT 

OCCURS WITH ADVANCING AGE (98) (Figure 1.8).  
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Figure 1.1 
 
(A) Concept of Young’s modulus for a Hookean (linear-elastic) material. O represents the unstressed state. The 

stress-straight relationship is represented by the dotted black line. Deformation from the O to point A is 
associated with a given stress (blue thin line) and strain (green thin line) for which Young’s modulus can be 
computed as the slope of the stress / strain (red dashed line). Similarly, deformation from the O to point B 
is associated with a change in stress (blue thick line) and strain (green thick line) for which Young’s 
modulus can be computed as the slope of stress / strain (red dashed line). Note than both computations use 
the change from the unstressed state O.  For Hookean materials, Young’s modulus is identical (constant) 
regardless of which point (A, B or any other) is used to compute the stress/strain relationship. The 
incremental change in stress could be computed from point A to B, without using the unstressed state. The 
incremental change in stress (thin dashed blue line) and strain (dashed green line) would then provide an 
incremental elastic modulus (Einc, also called incremental Young’s elastic modulus), which is the slope of 
the two (orange dashed line). Note that for linear-elastic stress-strain relations, the incremental elastic 
modulus is identical to the elastic modulus computed from the unstressed state. 

(B) Concept of incremental elastic modulus for a non-Hookean material. O represents the unstressed state. The 
curved stress-straight relationship is represented by the dotted black line. Deformation from the O to point 
A is associated with a given Young’s modulus, which is different from the Young’s modulus associated 
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with deformation from point O to point B. The incremental elastic modulus (Einc, also called Young’s 
incremental elastic modulus) can be computed as the “local” slope of stress / strain (orange dashed line) is 
also different and better reflects the “operating” stiffness. Within this narrow range of stress and strain, 
non-linearity is small and a linear slope is quasi representative of the stress strain relation. Note that the 
incremental elastic modulus also varies according to the operating range of stress and strain. For example, 
the A->B incremental modulus (orange dashed line) is different than the C->D incremental modulus (blue 
dashed line). 

(C) Concept of compliance, elastance and (cross-sectional) compliance coefficient. These measures represent 
the local slope of the pressure-volume, volume-pressure or cross-sectional area/pressure relation, 
respectively. 
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Figure 1.2 Inflammation and aging of arteries comparing primates with rodents 

  

47
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Figure 1.3 Proinflammatory mechanisms of age-associated arterial remodeling, see text and 

glossary of abbreviations to expand abbreviations in this figure. 
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Figure 1.4 MFGE8 and Vascular Smooth Muscle Cell Markers  
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Figure 1.5 Mechanisms of central arterial aging that focus on the role of matrix 

metalloproteinase 

  

Calpain-1

Extra-Cellular Matrix Remodeling
of the Aged Central Arterial Wall

MMP2

MT1MMP/TIMP2


Collagen I, II & III



Local Ang II signaling



Central Arterial Aging

OPN & ON

Vascular Calcification & Fibrosis

ALP, Ca2+

Elastin fragmentation

TGF-β1
Smad 2/3



 
 



Townsend RR, et al. – Page | 25 
Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness 
© 2015 by the American Heart Association, Inc. 

 
 
Fig. 1.6  Age-associated arterial proinflammatory signaling circuit 
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Schematic of age-associated arterial proinflammatory signaling circuit
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Figure 1.7 Age-associated increase in arterial pressure and MMPI inhibition 
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Figure 1.8 Chronic arterial inflammation 
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SECTION 2:  Devices used to measure arterial stiffness 
 
Authors:    Raymond R. Townsend, Gary F. Mitchell, Thomas Weber 
 
 
Before delving into the practical measurement of arterial PWV it is important to note that there 

are a variety of misunderstandings and limitations in this important and emerging area of clinical 

medicine that are often not appreciated.  Estimating arterial stiffness is a challenge, given the 

complexity in the arterial system and the segment(s) measured. At any selected point in the 

arterial circulation, the elastic properties of the arterial wall are nonlinear and, thus, difficult to 

model simplistically.  The physical properties of the arterial wall vary in different arterial 

segments, explaining the marked discrepancies in pulse wave velocities noted (for example) in 

the proximal aorta (which has low PWV) compared with the brachial artery (which has much 

higher PWV).  Moreover, the arterial PWV depends substantially on the mean arterial pressure 

and increases progressively at higher MAP values, making it important to compare PWV within 

or between individuals at isobaric conditions (124). 

It is possible to measure PWV invasively with indwelling catheters.  This is often the approach 

in animal models and some human studies performed in the catheterization laboratory or the 

operating theater.  Although this technique can be of value for the validation of non-invasive 

devices (see below), we will not address further these techniques as they are beyond the intent of 

this manuscript, and infrequently done in humans since the focus is on human measurement as it 

is used in clinical research and ultimately, in clinical practice.  

 
The most frequent site used to measure pulse wave velocity is the aorta (125).  Because a 

velocity is simply a function of distance and time, most approaches to PWV measurement input a 

distance measurement (or assume distance based on a nomogram for a particular population).  A 

common approach is the measurement from the suprasternal notch to the site where a carotid 

pulse can be felt (often around 80-100 millimeters) and the suprasternal notch to the place where 

the femoral pulse can be felt (often around 500-600 millimeters).  Because the pulse wave travels 

from the aorta to the carotid site simultaneously with pulse wave travel across the rest of the 

aortic arch the carotid distance is subtracted from the suprasternal notch-to-femoral distance.  For 
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example if a suprasternal notch-to-carotid measurement was 95 mm and suprasternal notch-to-

femoral was 575 mm, the net distance traveled would be: 575mm-95mm = 480mm. 

 

Measurement of pulse wave speed requires a means to detect pulse wave arrival at the two 

points.  The specifics of these measurements are outlined later in this section, but a shared 

characteristic of all techniques is the need to be able to clearly mark the onset of the pulse wave 

at that site.   In general, the foot of the waveform, just before the upslope of the waveform, is 

chosen as it is least affected by wave reflections, and has proven reliable in the various methods 

used (1).  Whether using a flow or a pressure wave, it is important to measure similar points in 

the two waveforms so that the time delay can be estimated. 

 

Methodologies 
Measurements of PWV are undertaken using several methodologies.  These fall into four main 

categories: 

• Devices that use a probe or tonometer to record the pulse wave using a transducer 

• Devices using cuffs placed around the limbs or the neck that record pulse wave arrival 

oscillometrically 

• Ultrasound approaches 

• Magnetic resonance imaging (MRI)-based approaches  

 

Devices using a probe or a tonometer to measure PWV 

The SphygmoCor ® device (Atcormedical, Australia) uses a Millar tonometer which is placed at 

any two places where a pulse is detectable to record PWV.  There is only one tonometer attached 

to the unit so PWV measurements require two separate sets of readings, typically 10 seconds in 

duration, to be taken.  The subject’s blood pressure is entered to calibrate the waveform, and 

proximal followed by distal distance measurements (for example suprasternal notch to carotid 

artery palpation site, and suprasternal notch to femoral artery palpation site) are entered, in 

millimeters, into the software.  Since they are sequential, not parallel measurements, a method to 

time the appearance of the pulse wave at the measurement site is necessary.  This is done by 

using a standard limb lead II electrocardiogram (EKG) tracing.  The time (measured in 

milliseconds) elapsing from the tip of the QRS in lead II to the onset of the “foot” of the pulse 
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wave is measured over 10 seconds, and averaged for that site.  Then the procedure is repeated for 

the second site.  Since velocity is a distance divided by time, the software calculates the travel 

distance (distal – proximal measurements) and divides this by the difference in the averaged 

distal minus the averaged proximal time measurements.   

The SphygmoCor device has been used in Anglo-Cardiff Collaborative Study of arterial stiffness 

(126) and the CRIC study of chronic kidney disease (127), as well as other cohorts and 

intervention studies.  Newer versions of this device (XCEL ®) use a cuff and tonometer system 

to record simultaneous pressure waves (128).   

Published reproducibility of the PWV with the SphygmoCor is good (129).  In this section, 

unless otherwise stated, reproducibility of a technique was established using Bland-Altman Plot 

analyses (130). 

 

The Complior ® (ALAM Medical, France) measures the PWV from distension sensors that 

register pulse waves in the cuffs, and in the special neck sensing unit used. Up to 3 arterial 

segments can be assessed simultaneously, and typically the neck, the upper arm and the upper 

leg are used from which carotid-radial and carotid-femoral PWV are determined.  The Complior 

software provides an on-line pulse wave recording and automatic calculation of the pulse wave 

velocity(131).When the operator determines that the pulse waveforms seen in real time on the 

computer screen are of good quality the system stops acquiring waveform data and calculates the 

time delay between the two waveforms of interest (such as carotid and femoral) using internal 

filters that remove artifacts from the waveforms.  The operator has entered a distance measure 

into the software and the system uses 10 heartbeats to calculate an average time delay (in 

milliseconds) which is then entered into the standard calculation. 

 

This device has been used extensively in epidemiologic studies in Europe and formed much of 

the database, particularly in dialysis patients, showing the significant and independent 

contribution of aortic PWV to cardiovascular (CV) morbidity and mortality (132-134) as well as 

contributing much of the data used in the European Society of Hypertension (ESH) consensus 

statement (135). 

Published reproducibility of the PWV with the Complior is good (136). 
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The PulsePen (DiaTecne, Italy) uses an ECG signal and a hand held tonometer (similar to the 

SphygmoCor) to perform carotid-femoral pulse wave velocity measures.  The PulsePen has been 

used in the Predictive Value of Blood Pressure and Arterial Stiffness in Institutionalized Very 

Aged Population (PARTAGE) study conducted in elderly patients in France and Italy (137).   

Published reproducibility of the PulsePen is good (138). 

 

Cardiovascular Engineering, Inc., (Boston, MA) uses a custom device to measure PWV using 

tonometric methods.  The system uses the foot-to-foot measure of carotid and femoral pressure 

waveforms, with distance measures to the carotid artery site and femoral artery site calculated 

from the suprasternal notch.  The EKG QRS complex is used as the timing onset point and the 

elapsed time to the carotid pressure waveform foot and the femoral pressure waveform foot is 

calculated and divided into the distance measurement.  This system has been used in the 

Framingham (139) and Reykjavik Studies (140), as well as other cohorts and intervention trials. 

Reproducibility of the PWV by this method is reportedly good (Gary Mitchell, personal 

communication). 

 

Devices using cuffs placed around the limbs or the neck that record pulse wave arrival 

oscillometrically 

One oscillometric device, particularly popular in Asia, is the VP1000 ® (Omron Healthcare, 

Japan).  This device places four cuffs on both arms and both ankles and performs a brachial-

ankle pulse wave velocity (baPWV).  It also provides an ankle-brachial index (ratio of systolic 

pressure in the ankle compared with that of the brachial artery; a marker of peripheral arterial 

disease when this ratio is < 0.9).  The newer model (VP2000) has additional probes which can be 

secured in place (with straps) that detect carotid (CAP) and femoral (FAP) pulses simultaneously 

(i.e. both probes capture the same pulsewave) by tonometry.  EKG leads are attached, as is a 

phonocardiographic microphone (whether the measurements are being done by oscillometry or 

tonometry).  The subject’s age, height and gender are entered into the software and the distance 

estimate is calculated using statistical norms (based on Japanese individuals). 

The Omron device has been used in prospective observational studies independently predicting 

loss of kidney function (141), cardiovascular disease (142), and all cause death (143) 

Published reproducibility of the PWV with the VP1000 is good (144). 
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The Mobil-O-Graph ® (IEM, Germany) uses a cuff based method to measure brachial blood 

pressure (causal and 24 hour), to estimate central aortic pressures by pulse wave analysis (PWA), 

and to estimate carotid-femoral PWV (145).  The Mobil-O-Graph 24h PWA ABPM device 

(IEM, Stolberg, Germany) uses a proprietary algorithm to obtain conventional brachial blood 

pressure readings  after which the brachial cuff is inflated to the diastolic blood pressure level 

and held constant for about10 seconds to record the pulse waves. Subsequently, central pressure 

curves are obtained using a transfer function.  To estimate aortic PWV, several parameters from 

pulsewave analysis, along with wave separation analysis are combined in a proprietary 

mathematical model incorporating age, central pressure, and aortic characteristic 

impedance(146).  The Mobil-O-Graph aortic PWV values have been validated by direct intra-

arterial measurement in the catheterization laboratory (147).   

Reproducibility of the Mobil-O-Graph is also good (148).  

 

The VaSera (Fukuda Denshi, Japan) uses cuffs on all four limbs and gates the timing for the 

pulse wave arrival at the ankle relative to the heart using phonocardiography through a small 

microphone taped onto the chest (149).  In addition to cardiac-ankle pulse wave velocity 

(reported as a cardio-ankle vascular index; ‘CAVI’) it also provides an ankle-brachial index.  

This device has been used mainly in Japan for longitudinal studies of dialysis patients (150) as 

well as in community studies of cognitive decline (151).   

Reproducibility of the Vasera is good (152). 

 

Ultrasound approaches 

Unlike tonometric or mechanotransducer methodologies which were developed for the dedicated 

purpose of measuring pressure wave travel, ultrasonographic techniques used to measure PWV 

leverage technology that is useful for many imaging purposes, and are not restricted to a 

dedicated service.  Many ultrasound devices have been used for such purposes and the following 

descriptions are more general, and not as device specific, as in prior sections. 

Ultrasonographic approaches have been used to measure PWV either at a particular location, or 

in a region of the arterial circulation.  When used in a single location, for example the brachial 

artery, the ultrasound captures the changes in arterial diameter and area and uses the Moens-
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Korteweg equation (153) where ‘c’ is the PWV.  In this equation Einc is the elastic modulus 

calculated in the middle panel.  To derive the compliance term (Change in area for change in 

pressure) the formula on the right panel is used.  The ultrasound is able to provide the change in 

area (‘dA’ which is due to the cardiac cycle –systolic and diastole), and (continuing with the 

brachial artery as an example) the systolic – diastolic pressure (i.e. the pulse pressure) is entered 

for the change in pressure (‘dP’).  In the numerator of the middle panel equation the πro3 

(‘ro’=radius) term can be separated into πr2 * r (or area * r).  Since 2*r is diameter, the numerator 

for the middle panel equation becomes Area0*diameter0.  Substituting into the denominator from 

the right panel equation we now have Einc = Area0*diameter0/[dA/dP]*h0 (where h0 is the vessel 

wall thickness).  Inserting this into the left panel, the h0 cancels out, the d0 cancels out, the values 

for Area0 and dA are entered from the ultrasound data, the local pulse pressure is entered for the 

dP, and a value for ρ (typically 1.05 gm/cm3) is entered and the velocity calculated.  This usage 

of ultrasound is uncommon, and limited by the challenges in accurately assessing the change in 

area (dA) of the aorta. 

𝑐𝑐 =  �(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗ ℎo)/(𝜌𝜌 ∗ 𝑑𝑑o) 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 2 ∗ 𝜋𝜋 ∗ 𝑟𝑟o3/CA*ho 

 

𝐶𝐶𝐶𝐶 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 

 

Doppler ultrasound using two microphones, simultaneously, has been used to measure regional 

(usually aortic) PWV in several studies (154).  Typically one microphone is clamped to the left 

side of the neck to insonate the site of the left subclavian artery and the second microphone is 

secured on the abdomen insonating the abdominal aorta above the bifurcation.   Distance is 

measured from the suprasternal notch to the location of the second microphone.  This can be 

challenging since the angle of insonation makes it difficult to reliably determine where the 

abdominal aorta is being insonated in most (obese) people.  The foot of the flow wave from each 
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of the recording sites is used, and the time elapsed in milliseconds is calculated.  There is no set 

duration of recording, and not uncommonly 1-2 minutes of recordings are done (155). 

In some cohorts, Doppler signals were acquired in sequence using a single microphone, and 

insonating the right common carotid artery and the right femoral artery (156).  These techniques 

have shown independent predictive value for cardiovascular outcomes, and death, in longitudinal 

studies of diabetics (155), the healthy elderly (157) and a general population (156).  

Ultrasound is also used to assess local (cross sectional) distensibility of vessels such as the 

carotid artery.  B-mode ultrasound, video analysis and echo-tracking methodologies are common 

approaches used (135;158).  Section 6 (below) has an expanded discussion of this aspect and 

device comparisons in Table 6.4. 

Published reproducibility of ultrasound-based PWV is good (159;160) 

 

Magnetic resonance imaging (MRI)-based approaches 

 

There are several magnetic resonance imaging (MRI) methods to assess arterial stiffness. Phase-

contrast MRI (PC-MRI) can be used to assess blood flow. This technique relies on the fact that, 

when 2 opposing magnetic gradient pulses are applied to static nuclei aligned in a magnetic field, 

the effects of the two pulses on their nuclear spin cancel each other out, but if a particle moves in 

the time between the pulses, a shift in the phase of the nuclear spins within the moving particle is 

accumulated, which is proportional to the velocity of movement along the gradient’s direction 

(161). PC-MRI can be used to acquire blood flow velocity maps along any given anatomical 

plane. When the gradient direction is applied exactly perpendicular to the cross-sectional vessel 

plane (“through-plane” velocity encoding), flow can be measured through the vessel cross 

section. Such an approach can be used to compute the time delay between the onset of flow in 

the ascending and descending thoracic aorta, which can be simultaneously interrogated in cross-

section in a properly prescribed anatomic plane. Alternatively, the gradient direction can be 

prescribed in-plane with the vessel flow axis, allowing the acquisition of a velocity map along 

the length of the vessel. This approach allows the measurement of the spatiotemporal flow 

profile along the length of the vessel, thus allowing the computation of pulse wave velocity. This 

approach can be easily applied to the thoracic aorta in the “candy cane” plane.  
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PC-MRI sequences require a user-defined velocity-encoding sensitivity (VENC), which should 

be as low as possible to minimize noise during the acquisition, yet higher than peak flow velocity 

in the region of interest to avoid aliasing. Although VENC should be tailored to individual 

measurements, a VENC of 130-150 cm/sec allows for an adequate interrogation of thoracic 

aortic flow in most cases. PC-MRI data are acquired over several cardiac cycles and consistent 

cardiac timing in each cycle is assumed. Adequate PC-MRI flow measurements require careful 

attention to technical details, including the recognition and minimization of sources of error such 

as phase-offset errors caused by in-homogeneities of the magnetic field environment (short-term 

eddy currents) (161;162), signal loss due to turbulent flow, partial volume averaging due to 

limited spatial resolution, signal misregistration due to in-plane movement of the aorta and 

pulsatile flow artifacts. The temporal resolution of PC-MRI flow measurements should be 

maximized, which requires data collection over multiple cardiac cycles. This is usually achieved 

by prolonged (several minutes) acquisitions during free breathing. Various alternative techniques 

have been proposed for fast, real-time assessments of PWV (163-166). 

 

A second approach to measure arterial stiffness with MRI involves the assessment of arterial 

distension, which can be paired with pressure measurements to obtain local arterial compliance 

and distensibility. Steady-state free precession techniques provide high contrast between the 

arterial lumen and arterial wall and allow for automatic segmentation of aortic lumen throughout 

the cardiac cycle. Such approaches can be used for the assessment of ascending aortic properties, 

as long as simultaneous (or quasi-simultaneous) central pressure recordings are performed. 

Unfortunately, tonometric arterial pressure recordings are difficult within the MRI suite, since 

available tonometry systems are not MRI-compatible.  Irrespective of the approach used, it is 

critical to include an accurate measurement of blood pressure at the time of stiffness 

measurement because the mean arterial pressure is an important determinant of stiffness (see 

section 7 and recommendation 7.1).   

Good reproducibility of PWV by phase-contrast MRI has been reported, with intraclass 

correlation coefficients ~0.90 (167).   

 

Other approaches to measuring arterial stiffness 
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The HDI Profiler ® (Egan, MN) is a device which uses a radial artery waveform acquired by 

tonometry and calibrated by a brachial blood pressure to derive indices of arterial stiffness.  

Several indices can be obtained based on pressure measurements at a single site, which may be 

variably influenced by arterial mechanical properties, cardiac function and other hemodynamic 

phenomena. Analyses of pulse wave morphology can provide various indices which may or may 

not directly relate to arterial stiffness. Some authors (168-172) have proposed the application of a 

4-element Windkessel model of the arterial tree using the diastolic pressure decay from a radial 

pressure waveform as an input. The HDI device applies such modeling in order to derive 2 

indices (C1 and C2), which have been proposed to represent large and small artery elasticity, 

respectively (168-172).   Associations between indices derived from this model and 

cardiovascular risk factors (such as aging, hypertension or diabetes), incident hypertension (173) 

and renal function decline (174) have been reported.   However, there are important limitations 

to this approach, including: (1) The lack of a measured cardiac output (a critical input to the 

model), which is rather derived from age and body surface area and demonstrates a poor 

correlation with measured cardiac output (175); (2) The fact that parameters obtained with this 

method are not independent of the measurement location (175;176) challenges basic assumptions 

inherent to the model. Whereas a large number of studies in multiple cohorts have 

unquestionably demonstrated that large artery stiffness is a strong predictor of cardiovascular 

risk, the C1 index derived from this method (proposed to represent large artery elasticity) failed 

to predict cardiovascular risk in the Multiethnic Study of Atherosclerosis (177). C2 has been 

named “distal compliance” “oscillatory compliance” “reflective compliance” and more 

commonly “small artery elasticity”. Whereas C2 has been shown to predict cardiovascular events 

(177;178), there is no evidence that this index actually measures the elasticity or compliance of 

small arteries. The use of multiple names for this index illustrates the lack of a straightforward 

physical interpretation of this parameter. Given the unclear physiologic meaning of some model 

parameters, we recommend against the use of descriptive names (such as “small artery 

elasticity”) in favor of less descriptive terms (such as “C2”). Given the available epidemiologic 

and clinical data, there is a need for a better characterization of the physiologic determinants of 

C2. 

The ambulatory arterial stiffness index (AASI), computed as one minus the slope of the linear 

regression line between systolic and diastolic blood pressure during 24-hour ambulatory brachial 
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blood pressure recordings, despite its designation as a stiffness index, is not a direct 

measurement of arterial stiffness (179;180). Physiologic principles suggest that this index is 

likely to be influenced by other factors, such as heart rate, stroke volume and vasomotor tone, as 

well as their circadian changes (all of which are expected to affect the relationship between 

systolic and diastolic blood pressure at any given level of large artery stiffness in a 24-hour 

recording). Westerhof et al established, from a theoretical point of view, the dependency of 

AASI on heart rate and systemic vascular resistance and its role as an indicator of ventricular-

arterial coupling (by which the heart rate is “coupled” with the rate of diastolic pressure decay to 

maintain systolic and diastolic pressures within adequate ranges), rather than an index of arterial 

stiffness (181). Kips et al showed that the confounding effect of heart rate and vascular resistance 

constitute an important limitation of AASI as an index of arterial stiffness (180). AASI has also 

been shown to be influenced by the degree of nocturnal blood pressure fall (179).  Therefore, the 

value of AASI as a surrogate of arterial stiffness is unclear. Indeed, only a relatively weak 

correlation was reported between AASI and aortic PWV in one study, which did not persist after 

adjustment for age (179). It is important to note that the fact that although AASI is not a direct 

measure of arterial stiffness, that does not necessarily imply that it is not a useful marker of 

cardiovascular risk. AASI has been shown to independently predict cardiovascular mortality 

(182;183) and stroke(184) in large prospective studies.  

 
Limitations in methodologies 

In all carotid-femoral methods there is an issue of how distance of travel is measured (185) [see 

sections 6 and 7].  In addition, PWV changes as the waveform travels progressively further from 

the heart in the aorta; thus the PWV value obtained represents a spatial average. 

Sequential methods where there is a single microphone, tonometer or mechanotransducer 

measures the PWV transit time using different heartbeats, and reconstruct the delay using the 

ECG as a fiducial point.  Therefore, the methods are sensitive to alterations in heart rate and the 

pre-ejection period, which may alter the relation between the R wave and the foot of the 

proximal and distal pressure waveforms. 

MRI is limited by low temporal resolution, high cost, limited accessibility to MRI-scanners in 

many centers, less widespread available expertise and incompatibility with various ferromagnetic 

objects. In claustrophobic subjects, MRI may not be feasible and anxiolytics/sedatives, 
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commonly used clinically to overcome claustrophobia, may have vasoactive effects, influencing 

arterial measurements. 
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SECTION 3:  Importance of Arterial Stiffness  
 
Authors:    Gary F. Mitchell, John Cockcroft, Carmel McEniery 
 
 
Background 

Over the past two decades, arterial stiffness has emerged as a major new risk factor for several 

common adverse health outcomes, including cardiovascular disease(132;133;139;157;186-190), 

stroke(187), mild cognitive impairment and dementia(140;191-197), retinal disease (198;199), 

and kidney disease(127;200-203).  Arterial stiffness increases variably and nonlinearly with 

advancing age, with modest change in the first 5 decades of life and markedly accelerated change 

thereafter (204-206).  The prevalence of increased aortic stiffness, assessed as cfPWV greater 

than 12 m/s, is a few percent prior to 50 years of age but nearly 70% after 70 years of age (207).  

Arterial stiffness is associated with atherosclerosis, although the association is not a strong one 

(208). The pathophysiology of arterial stiffening differs from that of atherosclerosis and is 

associated with different risk factors (209;210). Once established, arterial stiffening is associated 

with various severe non-atherosclerotic consequences (211;212).  In addition, small studies have 

demonstrated that persistent elevation of cfPWV during treatment for hypertension or CVD is 

associated with high risk for an adverse outcome in those with established disease (213;214).  

The combination of a high prevalence of increased arterial stiffness in older people, higher risk 

for adverse outcomes in the presence of increased stiffness and aging of the population forebodes 

emergence of an epidemic of arterial stiffness-related disease over the next decades unless 

specific interventions are implemented that prevent or curtail age-related arterial stiffening. 

 

Arterial stiffness and cardiovascular disease (CVD) risk assessment  

The prognostic value of stiffness measures for incident cardiovascular disease has been well 

documented in numerous community-based and disease-based cohorts by various investigators in 

many countries throughout the Americas, Europe and Asia.  Conventional brachial pulse 

pressure, a widely available if somewhat nonspecific measure of aortic stiffness in older 

individuals, has been related to incident cardiovascular disease in thousands of publications, 

involving numerous large, independent cohorts (215-230).  cfPWV, which is currently 

considered to be the gold standard measure of aortic stiffness, predicts major cardiovascular 
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disease events in models that consider standard risk factors including concurrent blood pressure 

and pulse pressure (132;133;139;155-157;186-189;231-237).  Consideration of cfPWV 

reclassifies risk in individuals at intermediate risk for CVD, suggesting that consideration of 

cfPWV provides novel risk information beyond that provided by standard risk factors (139).  The 

added benefit of cfPWV may be a manifestation of the relatively modest relation between 

cfPWV and standard risk factors other than age (209).  A genome-wide association study has 

identified a locus on chromosome 14 that is associated with increased cfPWV and has 

demonstrated that the locus is also associated with a proportional increase in risk for a major 

CVD event, suggesting that cfPWV is a risk factor for CVD rather than just a marker of risk 

(94).  The relatively weak associations between standard risk factors and cfPWV underscore the 

need to elucidate mechanisms associated with aortic stiffening in order to identify novel targets 

for interventions.  A recent meta-analysis of studies that have evaluated relations between 

cfPWV and major CVD events has shown a consistent, moderate relation between cfPWV and 

level of risk in models that adjusted for standard CVD risk factors (190).   

 

Arterial stiffness and the heart 

Excessive arterial stiffness represents a compound insult on the heart.  Aortic stiffening increases 

systolic load on the left ventricle, which contributes to ventricular hypertrophy and reduced 

mechanical efficiency, leading to an increase in myocardial oxygen demand (238;239).  

Stiffening is also associated with widening of pulse pressure and a reduction in mean diastolic 

pressure relative to mean systolic pressure.  Since coronary flow is normally highest in diastole, 

diastolic coronary perfusion falls and demand increases as the aorta stiffens and pulse pressure 

widens (240).  Arterial stiffening may be associated with diastolic dysfunction (241;242), which 

increases cardiac filling pressure and further limits coronary perfusion.  Finally, arterial stiffness 

is associated with atherosclerosis (243-246), which may further impair ventricular perfusion, 

possibly leading to catastrophic reductions in ventricular function during ischemia (240).   

Arterial stiffness is associated with diastolic dysfunction and diastolic heart failure due to direct 

effects of abnormal load and loading sequence on myocyte contraction and relaxation and 

indirectly through ventricular hypertrophy (242;247-251).  Diastolic dysfunction increases filling 

pressures and thus may increase load on the atria, which will contribute to atrial hypertrophy and 

fibrosis and ultimately to atrial fibrillation (252).  Arterial stiffness is associated with increased 
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risk for incident heart failure (223) and is increased in patients with established heart failure 

whether left ventricular function is preserved or impaired (253-255).  The added load imposed on 

the heart by a stiff aorta may contribute to development of heart failure directly through effects 

on ventricular structure and function or indirectly by promoting atherosclerotic disease, 

myocardial infarction and secondary heart failure.  Alternatively, neurohumoral activation in 

patients with heart failure may contribute to fibrosis and stiffening of the aorta, contributing to 

the observed association and creating the potential for a vicious cycle (256;257). 

 

Aortic stiffness and peripheral vascular function 

Effects of excessive pressure and flow pulsatility.  In young, healthy adults, the aorta is highly 

compliant and first generation muscular arteries are relatively stiff.  The abrupt transition from 

the compliant (low impedance) aorta to the stiff (high impedance) muscular arteries creates 

impedance mismatch.  When a traveling wave encounters such a discontinuity, a portion of the 

pulsatile energy stored in that wave is reflected and therefore is not transmitted into the distal 

vasculature.  Wave reflection at the junction between the normally compliant aorta and relatively 

stiff muscular arteries may represent a protective mechanism that limits transmission of 

excessive pulsatility into the microcirculation (258).  The magnitude of the reflection coefficient 

at such a boundary depends on the degree of impedance mismatch between proximal and distal 

vessels, with a greater difference in impedance producing a larger reflection (140;259). A 

disproportionate increase in aortic impedance with little change or a decrease in muscular artery 

impedance with advancing age and in the presence of various vascular risk factors leads to 

progressive impedance matching between aorta and peripheral arteries.  Impedance matching 

reduces the reflection coefficient and hence the amount of wave reflection at the interface 

between aorta and proximal branch vessels and therefore increases transmission of excessive 

pulsatile energy into the periphery where it may cause damage (140;205;206). 

Resistance vessel remodeling and impaired reactivity. Prior studies have shown that increased 

aortic stiffness and excessive pressure pulsatility are associated with increased resting 

microvascular resistance and markedly impaired reactivity in response to ischemic stress in the 

forearm (260).  Resistance vessel remodeling, as assessed by the media-lumen ratio, is more 

closely related to pulse pressure than mean pressure, suggesting that anatomical constraints may 

contribute to limited reactivity in remodeled vascular beds (261-264). Indeed, a recent study 
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demonstrated a significant relationship between aortic PWV and media lumen ratio in a cohort of 

hypertensive subjects after adjustment for age and blood pressure (265). Dynamic tone in small 

arteries is also affected by pressure pulsatility (266-269).  As a result, vascular resistance in 

autoregulated organs such as the kidney and brain may depend on pulse pressure as well as mean 

arterial pressure.  If resistance vessel tone increases in response to pulse pressure at a constant 

level of mean pressure, flow will fall as resistance increases.  Hence, alterations in the relation 

between mean and pulse pressure could lead to dissociation between mean pressure and 

resistance and interfere with autoregulation of flow.  Beyond midlife, pulse pressure increases 

rapidly as mean pressure remains constant or falls, potentially putting autoregulated organs at 

risk for relative ischemia.   

Labile blood pressure and transient ischemia.  High aortic stiffness is associated with increased 

blood pressure lability (270-272).  A stiffened vasculature is less able to buffer short term 

alterations in flow.  Increased aortic stiffness is also associated with impaired baroreceptor 

sensitivity (271;273-275).  Together, these limitations may result in potentially marked 

alterations in blood pressure as cardiac output changes during normal daily activities, such as 

changes in posture and physical exertion (276).  The concordantly unfavorable combination of 

impaired microvascular reactivity and excessive blood pressure lability in an individual with a 

stiffened aorta may contribute to insidious damage to vascular beds and chronic microvascular 

ischemia throughout the body, leading to progressive target organ damage that eventually 

manifests as symptomatic disease(258;277). 

Arterial stiffness (arteriosclerosis) is associated with atherosclerosis, although the association is 

not a strong one and the two processes should be viewed as distinct pathophysiological entities.  

Aortic stiffening may increase the risk for development of atherosclerosis as a result of 

atherogenic hemodynamic stresses associated with a stiffened aorta, including increased pressure 

pulsatility and abnormal flow patterns in large arteries, with high flow and shear stress during 

systole and stasis or flow reversal during diastole (211). Arteriosclerosis also has important 

implications for structure and function of the microcirculation. 

 

Arterial stiffness and the brain and eyes 

Relations between aortic stiffness and structural lesions in the brain. High flow organs such as 

the brain and eye are particularly sensitive to excessive pressure and flow pulsatility (278).  High 
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local blood flow is associated with low microvascular impedance, which facilitates penetration 

of excessive pulsatile energy into the microvascular bed (140).  Aortic stiffening is associated 

with microcirculatory remodeling that may serve to limit capillary exposure to excessive 

pulsatility (266) but also impairs reactivity (260), potentially contributing to repeated episodes of 

microvascular ischemia and tissue damage.  Microvascular ischemia in the brain manifests as 

white matter hyperintensities, clinically unrecognized focal brain infarcts, and tissue atrophy, 

each of which contributes to cognitive impairment and frank dementia.  Thus, microvascular 

damage and remodeling may represent a mechanistic link between aortic stiffening, brain lesions 

and cognitive impairment.   

Aortic stiffening is also associated with increased risk for large vessel strokes, which may be 

ischemic or hemorrhagic (187;224).This may be mediated through atherosclerosis, with 

increased stiffness contributing both to atherogenesis and risk for plaque rupture (279) or 

through atrial enlargement and fibrosis, which can trigger atrial fibrillation, providing a cardiac 

source for embolus (252).   Excessive pressure pulsatility can also predispose to large artery 

dissection or rupture of intracranial aneurysms, leading to hemorrhagic stroke.  In addition, 

increased aortic stiffness is associated with blood pressure lability, which is a risk factor for 

incident stroke (280).  Aortic stiffening is associated with atherosclerosis, probably 

predominantly as a result of atherogenic hemodynamic stresses associated with a stiffened aorta.   

Mild cognitive impairment and dementia. Several studies have demonstrated relations between 

arterial stiffness and cognitive function in selected (194;196;281-283) and community-based 

samples (191;197;284;285).  Increased aortic stiffness is associated with the full range of 

cognitive impairment, progressing from mild cognitive impairment, which has been 

demonstrated across multiple cognitive domains, to frank dementia.  In light of the generalized 

insult on the brain vasculature that occurs, it is perhaps not surprising that aortic stiffness is 

associated with a broad spectrum of cognitive sequelae, and has been established as a risk factor 

for both vascular and Alzheimer-type dementias(192). 

 

Arterial stiffness and the kidneys 

Like the brain, the kidneys are low impedance organs that are exposed to high flow throughout 

the day.  In addition, the unique structure of the microvasculature in the kidney, with resistance 

vessels on either side of the glomerulus, markedly increases pressure in the glomerulus to nearly 
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aortic levels.  In the presence of increased aortic stiffness, the microvasculature of the kidney is 

exposed to excessive pressure and flow pulsatility that can damage the glomerulus, leading to 

proteinuria and loss of function (286;287). In addition, a recent study has also demonstrated that 

such increases in renal pulsatility also correlate with CV and renal outcomes (288).  Numerous 

studies have demonstrated modest but robust associations between increased pulse pressure or 

pulse wave velocity and reduced glomerular filtration rate (GFR) or proteinuria (200;289-301).  

However, relations between estimated GFR and stiffness measures are less robust in some 

studies after adjusting for potential confounders.  In a study that measured GFR directly, higher 

PP was associated with reduced measured GFR.  Importantly, PP was not related to GFR 

estimated from serum creatinine in that study, indicating that relations between PP and estimated 

GFR may be obscured in older individuals, where loss of muscle mass may reduce accuracy of 

creatinine-based GFR estimating equations (302-304).  Given that the prevalence of abnormal 

aortic stiffness is heavily age-dependent, the burden of stiffness-related kidney damage may be 

underestimated when estimated GFR is used as a surrogate for kidney function. 

 

Arterial stiffness and hypertension 

The association between arterial stiffness and hypertension is well established (305-309).  There 

is a widely held belief that increased aortic stiffness in hypertensive individuals is largely a 

manifestation of longstanding hypertension-related damage that stiffens the large arteries.  A 

recent analysis from the Framingham Heart Study has shown that higher arterial stiffness, as 

assessed by cfPWV at an initial exam, is associated with blood pressure progression and incident 

hypertension 7 years later (305).  However, higher blood pressure at an initial exam was not 

associated with progressive aortic stiffening, suggesting that aortic stiffness is a cause rather than 

a consequence of hypertension in middle-aged and older individuals.  These results and several 

additional studies underscore the importance of better defining the pathogenesis of aortic 

stiffening (306-309).   

A fuller elucidation of basic mechanisms that contribute to increasing pulse wave velocity and 

pulse pressure may offer insights into targets for development of more effective interventions to 

prevent or treat hypertension. 

 

Future cardiovascular risk 
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Stiffening of the central arteries has a number of adverse hemodynamic consequences, including 

a widening of pulse pressure, a fall in shear stress rate, and increased transmission of pulsatile 

flow into the microcirculation. These effects have a number of detrimental consequences that 

may, in part, explain mechanistically why stiffness is a predictor of risk. Numerous studies 

involving various disease-specific and community-based cohorts have demonstrated that higher 

cfPWV is associated with increased risk for a first or recurrent major cardiovascular disease 

event (190;310).  Consideration of cfPWV substantively reclassifies risk in individuals at 

intermediate risk for CVD, suggesting that consideration of cfPWV provides novel and clinically 

relevant information beyond that provided by standard risk factors (139;310). The added benefit 

of cfPWV in risk prediction models may be a manifestation of the relatively modest relation 

between cfPWV and standard risk factors other than age and blood pressure (209).  In a recent 

individual participant meta-analysis, higher cfPWV was shown to be associated with increased 

risk for coronary heart disease, stroke and composite cardiovascular events.  Importantly, relative 

risk was strongest in younger individuals, where an opportunity exists for early identification, 

lifestyle modification and possible mitigation or prevention of further potentially irreversible 

deterioration of aortic structure and function (310). 
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SECTION 4:  Arterial Stiffness and Wave Reflections 
 
Authors:    Wilmer Nichols, Julio Chirinos, Kevin Heffernan 
 
 
 
Ventricular/Vascular Coupling and Ventricular Afterload    

The mechanical “afterload” imposed by the systemic circulation to the pumping left ventricle 

(LV) is composed of a static (or steady) and a dynamic (pulsatile) component and is an important 

determinant of normal cardiovascular function and a key pathophysiologic factor in various 

cardiac and vascular disease states. In the presence of a normal aortic valve, pulsatile LV 

afterload is largely determined by the elastic properties (arterial stiffness) and wave reflection 

characteristics of the arterial tree (“arterial load”) (1;311-313); the steady component of LV 

afterload is determined by arteriolar caliber (“arteriolar load”).  

Although brachial arterial pressure (systolic, diastolic and pulse) is taken as a useful surrogate of 

arterial function and LV afterload in clinical practice, it should be recognized that: (1) Afterload 

affects, in a reciprocal fashion, the pressure and flow waves generated by the LV; and (2) 

Pressure and flow waves are not only dependent on afterload, but are also strongly influenced by 

LV structure and function (1;311-314).  Therefore, LV afterload cannot be fully described in 

terms of peripheral pressure alone, but should be assessed from central pulsatile pressure-flow 

relations. 

 

Ventricular-Arterial Interactions 

At the beginning of each cardiac cycle, the heart generates a forward-traveling energy pulse that 

results in increased blood pressure and forward flow in the proximal aorta during early systole 

(1;205;314). The energy wave generated by the LV (incident or forward wave) is transmitted by 

conduit vessels and partially reflected at sites of impedance change or mismatch, such as points 

of branching, change in lumen diameter (taper) and material properties along the arterial tree. 

Multiple small reflections are transmitted back toward the heart and merge into a “net” reflected 

wave, composed of the contributions of the scattered backward reflections. This reflected wave 

is most often portrayed as a single discrete wave, originating from an “effective” reflection site, 

but is actually the resultant of scattered reflections, originating from distributed reflection sites 

(1;315). In addition to hemodynamic phenomena related to wave transmission and reflections, 
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the large elastic conduit arterial system exerts a buffering function, which depends on its 

compliance and allows it to accommodate additional blood volume during systole without 

excessive increases in pressure and to release that excess volume throughout diastole without 

excessive drops in pressure (17).  

 

Quantification of Arterial Load 

Analyses of central aortic pulsatile pressure-flow relations (i.e. aortic input impedance spectra) 

allow the quantification of “steady” or “resistive” load and various components of LV pulsatile 

load (1;316-318). The steady component of afterload depends largely on mean arterial pressure 

and the peripheral resistance, which in turn depends on arteriolar caliber, the total number of 

arterioles that are present “in parallel” and blood viscosity (1;318;319). It can therefore be 

affected by arteriolar tone, arteriolar remodeling, microvascular rarefaction and endothelial 

function. Pulsatile LV afterload is, in contrast, predominantly influenced by the properties of 

larger conduit arteries (both elastic and muscular) and wave reflections. Although pulsatile LV 

afterload is fairly complex and cannot be expressed as a single numeric measure, key indices of 

pulsatile LV afterload can be quantified and summarized using relatively simple principles and 

mechanical models of the systemic circulation, using time-resolved proximal aortic pressure and 

flow waves (319;320). Time-varying aortic pressure and flow waves can be assessed invasively 

or non-invasively. The large majority of the early studies on LV pulsatile load were performed in 

dogs and rats with cuff type flow probes implanted on the ascending aorta and pressure measured 

with fluid-filled catheter-manometer systems (321) or high-fidelity pressure catheter transducers 

(322). Later invasive studies in humans were performed using high fidelity pressure-velocity 

catheters (323-326).  Non-invasive assessment of central aortic pressure can now be achieved 

using high-fidelity applanation arterial tonometry at the carotid artery or by using a generalized 

transfer function to synthesize an aortic pressure waveform from the radial (or brachial) pressure 

waveform (1). Aortic blood flow can also be measured non-invasively in humans, using pulsed 

wave-Doppler ultrasound (327;328) or phase-contrast magnetic resonance imaging (161). The 

most convenient method to assess aortic inflow is pulsed wave Doppler interrogation of the LV 

outflow tract, given that systolic LV volume outflow equals proximal aortic volume inflow 

(328).  LV afterload can be assessed in the frequency domain from the aortic input impedance 

spectrum (calculated from the harmonic components of central aortic pressure and flow waves) 
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or estimated in the time domain from the central aortic pressure wave (1;311-313;329-331). 

Input impedance is the “summed” mechanical load imposed by all vessels downstream of a 

particular point (and which can be fully assessed by measuring time-varying flow and pressure at 

that particular point) (1;312;316;321;329;332-334). Therefore, “aortic input impedance” 

represents the summed mechanical load impeding LV ejection.  It should be noted that aortic 

input impedance is not exclusively determined by aortic properties, but depends on the properties 

of the entire arterial system and wave reflections.  

Key parameters of pulsatile LV load include the characteristic impedance (Zc) of the proximal 

aorta and the amplitude and timing of wave reflections. The Zc of an artery can be intuitively 

calculated as the sum of higher harmonics of the pulsatile pressure-flow relation or impedance 

moduli spectrum in the absence of reflected waves. Aortic Zc can also be computed in the time 

domain as the ratio (P1/ΔQ) (Figure 4.1) (1) where P1 is the amplitude of the first systolic 

shoulder of the aortic pressure wave and ΔQ is peak aortic flow velocity. Zc is a "local” arterial 

property (note the difference with input impedance); consequently, Zc measured using proximal 

aortic pressure and flow represents proximal aortic Zc. An estimate of wave reflection severity 

(or amplitude) can be obtained from the aortic input impedance spectrum as the first harmonic of 

the impedance moduli (Z1) (1;323). It is important to note that the large majority of LV energy 

(>80%) is contained within the first and second harmonics, therefore, logical therapy to reduce 

LV energy and reduce myocardial mass should focus on theses lower harmonics.  

Wave reflection severity (strength or intensity) is usually accessed via wave separation analysis.  

This is based on the superposition principle.  Reflected waves, by virtue of adding to forward 

pressure and subtracting from forward flow, distort the linear relationship between the increase 

in pressure and the increase in flow that is seen in early systole (as a result of the forward wave 

generated by ventricular contraction) when the pulsatile pressure-flow relation is assumed to be 

governed purely by ascending aortic Zc (see below).  

 

Effect of Arterial Stiffness and Wave Reflections on LV Afterload 

The stiffness of various arterial segments have complex effects on ventricular afterload, through 

their effects on the early aortic systolic pressure rise, the total compliance of the arterial system 

and the velocity at which the pulse waves travel forward in the arteries and reflected waves travel 

backward toward the heart (1;313;335). In early systole, the forward-traveling energy pulse from 
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LV contraction favors an increase in pressure and forward flow in the proximal aorta. If proximal 

aortic Zc is high due to a stiff wall, a small aortic diameter, or both, the amount of early pressure 

(P1) (Figure 4.1) increase is relatively large for any given early systolic flow (1;17;205;312;314). 

The time of arrival of the reflected wave to the proximal aorta from the lower body depends on 

the location of reflection sites and on the PWV of conduit arteries which transmits both the 

forward and backward traveling waves (1;9;312;336). Aortic PWV is directly related to the 

stiffness of the aortic wall (square root of elastic modulus) and inversely proportional to the 

square root of aortic diameter (1;9;135;336). Stiffer aortas conduct the forward and backward 

traveling waves at a greater velocity than compliant aortas and therefore promote an earlier 

arrival of the reflected wave for any given distance to major reflection sites. The distance to the 

reflection sites is strongly dependent on total arterial (elastic and muscular) stiffness and body 

height (or length). In the presence of normal LV systolic function, typical ill effects of increased 

amplitude and propagation of the reflected wave on the aortic (and LV) pressure waveform 

include a mid-to-late systolic shoulder which causes an increase in peak (systolic) aortic pressure 

(and pulse pressure) and the area under the pressure curve during systole (see below) (1;315). 

Both age and hypertension increase elastic artery stiffness and decrease arterial compliance (1). 

The total arterial compliance of the systemic arterial tree depends on the summed compliance of 

the various arterial segments. The compliance of individual vessels is linearly proportional to 

vessel volume (or radius3) and, for any given “relative” vessel geometry (wall volume/lumen 

volume ratio), linearly and inversely proportional to wall stiffness (Young’s elastic modulus).  

The interaction between the stiffness and geometry (including taper) of large elastic and 

muscular arteries also impacts the characteristics and location of reflection sites. Reflected waves 

that arrive during LV ejection increase the mid-to-late LV systolic workload, systolic pressure 

time index, wasted LV energy and myocardial oxygen demand (1;322;331;337). It has also been 

proposed that the age-related increase in aortic stiffening and wave reflections promotes an 

excessive penetration of pressure pulsatility into smaller vascular beds in target organs such as 

the brain and the kidneys (258;317).It should be noted that although the timing of arrival of 

reflected waves from the lower body to the heart is influenced by aortic stiffness, the relationship 

between aortic stiffness and reflected wave transit time is relatively poor, presumably given the 

wide variability in the distance to wave reflection sites. Furthermore, there is not a direct 
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correlation between aortic stiffness and the amplitude of wave reflections over the entire life 

span.  

 

Myocardial Wall Stress 

Various indices of pulsatile LV afterload are useful because they are meant to be purely 

reflective of arterial properties (1). However, arterial load should always be interpreted by 

considering interactions between arteries as a load and the LV as a pump (1;248) and also 

between myocardial elements and instantaneous LV geometry and the time-varying load 

imposed by the systemic arterial circulation. Wall stress represents the time-varying mechanical 

load experienced by the contractile elements in the myocardium (myocardial afterload).  

Throughout systole, myocardial fiber activation results in the development of tension (stress) and 

shortening of myocardial segments, which results in progressive ejection of blood from the LV 

cavity and wall thickening. During early ejection, active development of fiber cross-bridges 

occurs in the electrically activated myocardium and peak myocardial wall stress occurs (338), 

because high LV pressure co-exists with quasi-diastolic geometry (relatively thin wall and 

relatively large cavity). Myocardial fiber shortening and ejection of blood determine a 

progressive change in LV geometry which causes a drop in myocardial stress (despite rising 

pressure) during mid-to-late systole. This shift in the pressure-stress relation is probably due to 

reduced ejection and appears to be necessary for the myocardium to handle the additional load 

imposed by wave reflections and increased wasted energy, but may be insufficient and/or 

compromised in the setting of wave reflections of early onset of large amplitude (339;340) and in 

the presence of lower LV ejection fractions (338). This may be important, because the 

myocardium appears to be particularly vulnerable to late systolic loading (see below). 

As expected from physiologic principles, various arterial properties affect time-varying 

myocardial wall stress differently. Whereas systemic vascular resistance is a very important 

determinant of wall stress throughout systole, Zc selectively affects early systole and peak 

systolic wall stress, wave reflections and total arterial compliance correlate with myocardial 

stress in mid and late systole and significantly influence the area under the stress-curve generated 

for any given flow output (340). 

 

Consequences of Pulsatile Afterload on the LV Myocardium 
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An increase in the pulsatile component of afterload causes an undesirable mismatch between the 

left ventricle and arterial system, which increases myocardial oxygen demand and decreases 

cardiac efficiency (238;341). These changes in ventricular/vascular coupling promote the 

development of LV hypertrophy (LVH) and often lead to both systolic and diastolic myocardial 

dysfunction (see below) (242;339;342-345). Indeed Jankowski et al (343) reported that the 

pulsatile but not the steady component of LV load predicted cardiovascular events in coronary 

patients. Several lines of evidence support the importance of the LV loading sequence (and not 

just “absolute” load) in LV remodeling and failure (322;337;346). Late systolic loading (and 

increase in wasted LV energy) has been shown to induce much more pronounced LVH and 

myocardial fibrosis in an animal model compared to early systolic loading, at identical peak LV 

pressure levels (322). In humans, reductions in wave reflection amplitude occurring during 

antihypertensive therapy predict regression of LV mass independently of blood pressure 

reduction (347).  Similarly, animal (249) and human studies (348) have demonstrated an adverse 

effect of late systolic load on diastolic relaxation. A recent study showed that the intensity of 

wave reflections, estimated from radial artery pressure waveforms, strongly predicted incident 

heart failure in the Multiethnic Study of Atherosclerosis (MESA) (349) while another study 

showed that arterial stiffness and wave reflection predicted cardiovascular mortality (156).  

The deleterious effects of wave reflections on the myocardium may be due to intrinsic 

differences in cellular processes between early and late systole. During early ejection, active 

development of fiber cross-bridges occurs in the electrically activated myocardium and peak 

myocardial wall stress occurs (338), whereas a transition from contraction to relaxation may 

occur at the myocardial level in mid-to-late systole, during which increases in load may lead to 

more hypertrophy (329) and abnormal diastolic relaxation (249;350). The differential effect of 

time-varying myocardial afterload on cellular processes taking place in early and late ejection 

should be a focus of further research. 

 

Pressure Differences Within the Arterial Tree and Pulse Pressure Amplification 

As the pressure wave travels from the heart to the periphery both systolic and pulse pressures 

(PP) increase markedly while mean pressure decreases only slightly (~2 mmHg) due to wave 

reflection and viscous damping (1;351). Thus, both systolic and pulse pressures are greater in the 

arm and leg than in the ascending aorta (352). This mechanism (PP amplification) ensures that 

 
 



Townsend RR, et al. – Page | 52 
Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness 
© 2015 by the American Heart Association, Inc. 

pulsatile load is lower in central versus peripheral arteries and, therefore, minimizes excessive 

cardiac pressure energy (or effort) and subsequent pulsatile LV afterload (346).  PP amplification 

(i.e. peripheral PP/central PP) is determined by a combination of factors including LV 

contractility and ejection duration, heart rate, arterial stiffness (elastic moduli), arterial caliber 

(and taper), arterial path length timing and amplitude of wave reflections, and arteriolar tone 

(vascular resistance) (1;351;353-356). These factors are inter-associated making it difficult to 

determine specific primary modulators.  Overall, it would appear that wave reflections explain 

the largest proportion of the variance in PP amplification with PWV (arterial stiffness), and heart 

rate making additional notable contributions (351;356;357).  Indeed the degree of amplification 

is age- and elastic artery stiffness-dependent and decreases as aortic stiffness and wave reflection 

amplitude increase (Figure 4.2A, 4.2B)(357;358). This difference between central and peripheral 

pressure progression may explain why central aortic pressure is a better predictor of 

cardiovascular events and outcome than peripheral brachial pressure (156;359-361). Since 

peripheral muscular arteries stiffen little with age (362-365), elastic properties of these vessels 

alter amplification minimally. Thus transmission (propagation) characteristics in the upper limbs 

remain relatively constant (366). However, PP amplification is markedly influenced by changes 

in smooth muscle tone of muscular arteries. Increased smooth muscle tone (contraction) 

increases wave reflection and reduces PP amplification while decreased tone (relaxation) has the 

opposite effect. Reduced PP amplification occurs with aging (1;353;367;368), obesity and 

disease (hypertension, diabetes, hypercholesterolemia, coronary artery disease) and is associated 

with traditional cardiovascular risk factors (369;370) and overall vascular burden (371).  

Moreover, PP amplification is associated with overt target organ damage and regression of target 

organ damage with therapy (i.e. LVH regression with antihypertensive therapy and exercise 

conditioning) (372;373), and it independently predicts future cardiovascular mortality (374;375).  

Thus, PP amplification has been proposed as a potential mechanical biomarker of cardiovascular 

risk and global arterial function. Racial differences in PP amplification have been reported with 

African American men having lower amplification than their white peers (376;377) related to 

increased arterial stiffness and wave reflections (378).  Sex differences in PP amplification also 

exist, with women (particularly post-menopausal women) having lower values than men (379).  

Reasons for this difference have been ascribed to a host of factors including: shorter stature in 

women (reduced height resulting in attenuated arterial path length and movement of reflection 
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sites more proximal), increased PWV affecting timing of the return of the reflected pressure 

wave, increased aortic taper and arterial impedance mismatch affecting wave reflection 

magnitude (1;380).  Sex differences in PP amplification have been linked to LV diastolic 

dysfunction in women (242;381).  In men and women over age 55 years, the mortality impact of 

PP amplification is 3-fold higher in women compared to men (379). In younger adults, PP 

amplification declines as diastolic blood pressure (DBP) rises, offering insight into well noted 

observations that peripheral PP is unrelated to CV risk in this age cohort (366).  Conversely, loss 

of PP amplification with aging results in peripheral pressures more closely approximating central 

pressures (Figure 4.2B), increasing the ability of peripheral PP to more accurately predict CV 

risk in older adults (366).  In older adults, PP amplification is predictive of heart failure, 

ischemic heart disease, atrial fibrillation and mortality (375;382).  In young healthy adults, it is 

also possible for PP amplification to result in spurious systolic hypertension (383).  Seen in taller 

men with compliant vessels, wave reflections are markedly attenuated and PP amplification 

profound (384;385).  The clinical implications of this elevated PP amplification in this 

population remains to be determined (383). As noted above, heart rate also makes a notable 

contribution to PP amplification and this is most likely via effects on wave reflection (386;387).  

With slower heart rate and prolonged systolic ejection duration, there is greater temporal overlap 

between forward and reflected pressure waves causing an increase in AP and AIx (1).  It is 

estimated that for every 10 bpm reduction in HR, there is an increase in AIx of 4% (387).  This 

in turn results in a reduction in PP amplification.  Medications that reduce heart rate such as β-

blockers are associated with reduced PP amplification because these drugs cause an increase in 

wave reflection amplitude (388;389).  Interestingly, lifestyle modification that results in 

bradycardia such as habitual aerobic exercise could possibly result in reduced PP amplification 

owing to HR-mediated increase in PP from increased wave reflection coupled with reduced 

arterial stiffness (376;377;390). PP amplification is usually calculated as the ratio of the 

amplitude of the PP between a proximal and distal site.  Alternative methods include calculation 

of absolute PP differences from peripheral to central sites (peripheral PP – central PP) and 

expressed as the absolute difference from peripheral to central sites relative to the central site 

[(peripheral PP – central PP)/central PP].  An issue that remains to be resolved pertains to 

methodology for central and peripheral PP appraisal.  Although the gold standard for PP 

measurement remains invasive recordings (391;392), this is not practical for routine clinical use.  
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Current studies noting clinical utility of PP amplification have calculated central PP non-

invasively either via: 1) synthesized aortic pressure waves derived from radial pressure waves 

and a generalized transfer function (GTF); 2) carotid pressure waves as a surrogate for aortic 

pressure calibrated against brachial mean and diastolic pressure (351).  While both methods are 

valid and have merit, neither is without flaw.  Use of the GTF approach requires the radial 

pressure wave to be calibrated against brachial SBP and DBP.  Given additional amplification 

from the brachial-to-radial sites, this approach has been questioned (393).  Compared to radial 

pressure waves, carotid pressure waves are more technically challenging to obtain calling into 

question reproducibility and accuracy (351).  Moreover, use of an oscillometric cuff to obtain 

brachial pressures may underestimate diastolic pressures, which would introduce an error into 

both methods (394).  Peripheral PP has been calculated using brachial cuff methods (mostly 

oscillometric) or radial pressure waves (from applanation tonometry and calibrated against 

brachial mean and diastolic pressures). Given differences in methodology, norms are currently 

not available.  When using synthesized aortic pressure waves from the GTF approach and 

brachial pressures obtained from an oscillometric cuff as done in the Anglo-Cardiff 

Collaborative Trial (ACCT), peripheral PP/central PP varies from 1.7 in the young (< 20 years of 

age) to 1.2 in the elderly (> 80 years of age) (363). These results are similar to those reported by 

Bia et al (367) over the same age range in the CUiiDARTE Project and those collected by 

Nichols et al (unpublished) (see Figures4.2A and 4.2B). When using carotid and radial pressure 

waves obtained from applanation tonometry as done in the Asklepios Study, PP amplification 

values tend to be lower (368). Future research is required to standardize measurement as use of 

aforementioned different techniques can result in a site-specific difference in PP calculation 

between 14-18 mmHg (395) resulting in slightly different values of PP amplification. Although 

not without limitation, measurement of PP amplification from noninvasive central and peripheral 

pulse recordings has proven superior to brachial cuff measures alone when assessing 

cardiovascular disease (CVD) burden, identifying individuals at risk for CVD events and 

monitoring response to therapy (371;375).  Due to systemic changes in arterial stiffness and 

wave reflections coupled with changes in heart rate, brachial BP is not an accurate predictor of 

LV load and central hemodynamic burden.  Moreover, the beneficial reduction in ascending 

aortic systolic and pulse pressures with various therapeutic approaches is often underestimated 

by cuff measurements of brachial artery pressure (1;396) (see below). 
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Components of the Central Aortic Pressure Wave  

Figure 4.1 shows invasively measured high-fidelity ascending aortic pressure and flow velocity 

waves in a normal middle-aged human. The measured aortic pressure (P) and flow (Q) waves are 

determined by the interaction (or algebraic sum) of a LV ejected forward traveling “incident” 

wave and a later arriving backward traveling reflected wave from the lower body (Figure 4.3) 

(1;156;341;397-403). The characteristics of the forward traveling wave depend, primarily, upon 

the elastic properties (Zc) of the ascending aorta and are not influenced by wave reflections 

(1;404;405). Two visible demarcations usually occur on the initial upstroke of the central aortic 

pressure wave in middle-aged and older individuals; the first shoulder (P1) and the inflection 

point, Pi. These demarcation points occur at an earlier age in patients with hypertension. The first 

(or early) shoulder is generated by LV ejection and occurs at peak blood flow velocity while Pi 

occurs later and denotes the initial upstroke of the reflected pressure wave; this wave represents 

the second (or mid-to-late) systolic shoulder (see Figure 4.1) (1;331;335;338;340;348;401;405-

407). The first shoulder is an estimate of incident (or forward) traveling wave amplitude while 

the second shoulder is generated by the reflected pressure wave from the lower body with 

amplitude AP. After arrival of the reflected wave in the central aorta, the pressure and flow 

waveforms diverge, because the reflected wave increases systolic pressure and reduces flow 

during deceleration. The degree of this divergence is associated with the local Zc and reflection 

site distance. This relation is used in linear wave separation analysis, which decomposes pressure 

and flow waveforms into their forward (incident) and backward (reflected) components.  

Reflection magnitude (RM) is expressed as the ratio of AP and P1 while reflection (or 

augmentation) index (AIx) is the ratio of AP and central aortic PP. These two variables (RM and 

AIx) are similar and are measures of wave reflection strength (or intensity) (1;404;405).  When 

the first shoulder and Pi occur simultaneously, as often occurs in older individuals and patients 

with severe hypertension, no demarcation is visible (see Figure 4.4). Therefore, if pressure and 

flow velocity are measured simultaneously, P1 and Pi can be determined and AP calculated. If 

flow velocity is not measured and Pi is not visible, a method that uses the second (or fourth) 

derivative of the pulse to identify Pi is used. In this method, Pi occurs at the second peak of the 

second derivative (1;401). In younger individuals the second systolic shoulder occurs much later 

than the first and is of lower amplitude (1;324). In a system with no reflections (e.g. very 
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compliant or very long) the flow and pressure waves are similar in shape (see Figure 4.3). The 

characteristics of the reflected wave depends upon a more complex set of determinants than the 

forward wave, namely, the physical properties (stiffness, taper and branching) of the entire 

arterial tree (elastic plus muscular arteries and arterioles), PWV, the round-trip travel time (Tr) of 

the wave from the heart to the periphery and back, and the distance to the major “effective” 

reflecting site in the lower body (1;316;324;330;406;408). AIx is related to arterial properties via 

changes in PWV from the heart to the termination of vessels in the lower body. Increased arterial 

stiffness increases PWV and causes early return (Tr decreases) of the reflected wave from lower 

body reflecting sites to the heart during systole when the ventricle is still ejecting blood 

(1;315;335;338;409;410). Arterial stiffness, through its effect to decrease Tr results in an 

increase in AP and systolic duration. This mechanism augments ascending aortic systolic and PP 

(91;343;411-414), an effect that increases arterial wall stress, potentiates the development of 

coronary artery atherosclerosis, elevates LV afterload, and increases LV mass and oxygen 

demand while decreasing stroke volume (341;372;373;406). Since the reflected wave and 

associated boost in pressure (LV and aortic) does not contribute positively to ejection of blood, 

the effect of the extra workload is wasted (pressure) energy (or effort) (339;347;404;406;415-

417) the ventricle must generate to overcome the augmented aortic pressure. Accordingly, 

optimal treatment for high central systolic and PP (pulsatile component of LV load) should focus 

not only on increasing arteriolar caliber and reducing peripheral resistance (steady component of 

LV load) but also on reducing arterial stiffness, PWV, systolic wave reflection and Ew 

(418;419). Correct calculation of these variables (that is, AIx, forward and reflected wave 

amplitude and travel time, distance to reflection sites, and Ew) depends on the accurate 

determination of Pi (see above) (1;328;401). Also, care must be taken when using AIx as a 

measure of arterial stiffness because of its dependence on heart rate, ejection duration and body 

height (1). In general, RM is used in the frequency domain while AIx is used in the time domain 

as a measure of wave reflection intensity (1).  Since invasive recordings of ascending aortic 

pressure waves and pulse wave analysis can only be made in a selected number of patients in the 

catheterization laboratory, techniques have been developed recently that enable the non-invasive 

determination of the above variables (156;347;356;405) in large cohorts with similar results 

(341;389;411;412;420-422). Some studies use the carotid artery wave as a surrogate for the 

central aortic pressure wave while others derive it from the radial artery wave using a GTF. 
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Briefly, radial artery pressure waves are recorded at the wrist, using applanation tonometry with 

a high-fidelity micromanometer.  After 20 sequential waveforms are acquired and ensemble 

averaged, a validated GTF is used to synthesize the central aortic pressure wave non-invasively. 

To obtain the GTF, computer software performs a Fourier series representation of the radial 

artery waveform into harmonic components of amplitude and phase angle. These harmonics are 

then adjusted using data obtained from previous invasively measured aortic pressure waves 

(1;356;405).  Large observational trials such as the Baltimore Longitudinal Study of Aging (43), 

Framingham (336;423) and Anglo-Cardiff (ACCT) (363) and many other aging studies 

(358;365;424-426) and reviews (400;419;427) observed that age is an important determinant of 

arterial properties and wave reflection characteristics that influence dramatic changes in both 

central and peripheral blood pressure. In youth, the reflected wave from the lower body travels at 

a reduced PWV and arrives at the heart in diastole (Figure 4.4, top) which aids coronary artery 

and myocardial perfusion, but with increasing age (Figure 4.4, middle and bottom), the elastic 

arteries stiffen, increase PWV and cause the reflected wave to arrive at the heart during systole 

(second shoulder) with greater amplitude and systolic duration. This modification in wave 

reflection characteristics causes a decrease in stroke output (negative reflected wave during 

deceleration) and a corresponding decline in cardiac output (428). Aortic systolic and PP 

pressure increase with age whereas diastolic pressure increases to middle age and then decreases 

in later life (43;363;423;428).In the three individuals shown in Figure 4.4, PP in the radial (and 

brachial) artery doubled, whereas PP in the ascending aorta, because of wave reflection, tripled, 

causing amplification to decrease from 1.7 to 1.1 (see (363;429) and Figure 4.2B). Because of 

increased central elastic artery stiffness, the reflected wave from the lower body migrates 

(leftward in Figure 4.4) into systole and increases aortic AP and AIx; in the radial and brachial 

artery, since stiffness changes very little with age (362;364;365;430), the forward to reflected 

wave (from the hand region) ratio remains essentially unchanged. Wave reflection characteristics 

are amplified in older individuals and in patients with systemic hypertension (364;431) thereby, 

causing a reduction in PP amplification. This explanation of wave reflection characteristics and 

the associated effects on central aortic pressure wave morphology in systole and diastole is 

accepted by most but not all (432). In a system with no reflections or one in which the reflected 

wave arrives after peak systolic pressure and with low amplitude, an increase in aortic stiffness 

alone only causes an increase in aortic PP (for a given stroke volume), with little change in wave 
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contour (see Figure 4.3). Major changes in aortic pressure wave contour are due to alterations in 

amplitude and timing of wave reflections from the lower body including both elastic and 

muscular arteries. LV afterload, central aortic and brachial artery systolic and PP, and AIx are 

increased by elastic artery stiffening and increased wave reflection amplitude, all of which are 

alterations associated with aging and hypertension (363;423) and resulting in LVH 

(322;367;373;433-437) and arterial wall damage—major cardiovascular,  cerebrovascular, and 

renovascular risk factors (156;157;197;258;281;317;411;413;414;431;438-443). Cardiovascular 

risk factors include coronary artery atherosclerosis, decreased coronary blood flow and coronary 

flow reserve (CFR), LVH, heart failure and mortality. An explanation for the progression from 

normal LV systolic function to severe failure is available on the basis of the argument proposed 

by Westerhof and O’Rourke (1;444). This explanation has been effectively used to characterize 

mechanical pumps, with the LV seen to act as a flow source (powerful ejection) in youth when 

the ventricle is optimally matched to a compliant arterial system and power generation is 

minimal and wasted energy is zero. Under these circumstances the reflected wave arrives in 

diastole (Figure 4.4 and Figure 4.5A) and aids in coronary artery perfusion and coronary flow 

reserve (CFR). The age-related increase in elastic artery stiffness (and PWV) causes the reflected 

wave to arrive earlier to the heart and boost pressure in mid-to-late systole and places an extra 

pulsatile workload on the LV causing it to generate more force, which is wasted energy (339). 

These changes in arterial properties and wave reflection characteristics cause the LV to change 

from a flow source to a combined flow and pressure source (ejection limited by pressure 

achieved) as hypertension develops (Figure 4.5B). As the elastic arteries become stiffer LV 

pressure increases and causes an increase in systolic pressure time index (SPTI) and myocardial 

oxygen demand. Sustained elevation and prolongation of mid-to-late systolic augmentation 

results in LVH (346;445;446), which is associated with progressive degenerative changes in the 

myocytes such that these weaken and develop less force with each contraction. The weakened, 

hypertrophied fibers lengthen and the LV dilates, with augmented systolic pressure and stroke 

output initially being somewhat maintained (Figure 4.5C) at greater muscle length and LV 

volume through the Frank-Starling mechanism (1;330). The LV ejection fraction in these 

patients is usually ≤40%. Ultimately, compensation is lost and the LV cannot generate the extra 

force necessary to completely overcome the mid-to-late systolic augmented pressure. AP, AIx, 

and systolic (and pulse) pressure are therefore reduced and associated with a decrease in ejection 
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duration, Ew, SPTI, and stroke volume (447). The LV ejection fraction in these patients is 

usually <35% (448). When LV contractility is severely impaired, wave reflection does not boost 

systolic pressure (Figure 4.5D) because the heart is incapable of responding, so that systole is 

terminated prematurely, and wave reflection is seen to have had a negative influence on flow 

rather than a positive influence on pressure (330;448); and the LV reverts back to a flow source 

(weak and abbreviated ejection) as heart failure progresses and PP decreases (339;447). Indeed, 

data from a large nationwide cardiology database (IN-CHF Registry) indicate that a low PP is an 

independent predictor of mortality in heart failure (449). In severe heart failure there is a direct 

positive relation between ejected flow and generated pressure, therefore, an improvement in 

hemodynamics will be viewed as an increase in ejection duration, AP, AIx, PP and SPTI (Figure 

4.6) (1).  

An increase in arterial pressure pulsatility resulting from arterial stiffness and wave reflection 

has little effect on the systemic circulation to most bodily tissues because their flow is 

determined by mean pressure, and because cells are protected by the vasoconstricted small 

arteries and arterioles upstream (317). The brain and kidney cells receive no such protection 

because arterial vessels remain dilated. The large increase in arterial pressure pulsatility is 

applied to all the distributing arteries in these organs while mean flow is maintained (450). Brain 

and kidney arteries of all sizes are thus subjected to higher pulsatile circumferential stress and 

higher longitudinal shear stress. Their ability to withstand increased stresses depends on their 

resilience, and this is markedly decreased in a number of diseases, particularly diabetes mellitus 

(1;451). Aging changes of large arteries thus promote a “set-up” for small arterial disease and the 

types of changes elucidated by Byrom (450;452) over 50 years ago. Byrom’s work was initially 

conducted in rats but was applied to the small-vessel disease seen in human hypertension. He 

showed that damage to small arteries could be induced by increased pulsatile stress and could 

lead to tearing of their endothelial and smooth muscle cells with disruption of the vessel. He thus 

explained development of small arterial dilations and aneurysms, and the features of 

lipohyalinosis and of fibrinoid necrosis as seen in the brains and kidneys of hypertensive disease. 

Byrom further showed that these changes were largely reversible when disrupting forces were 

reduced (452).  

Peripheral Artery Pressure Waves  
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Peripheral wave reflections are greater than central wave reflections and increase somewhat from 

brachial to radial vascular beds owing to altered timing of wave reflections and altered location 

of reflection sites (1;404).  This observation has also been confirmed with wave intensity 

analysis (453).  In the arm, PP pressure amplification and contour are strongly influenced by 

wave reflection from both reflection sites in the hand and in older individuals, distal reflection 

sites in the lower body (1). The brachial and radial artery pressure waves are composed of three 

waves: a forward traveling wave generated by blood flow and two reflected waves, one from the 

hand region (owing possibly to larger basal vasoconstrictor tone where circulation occurs 

through the skin) (453) and a later arriving wave from the lower body region (404). As the elastic 

arteries become stiffer (e.g. with age and hypertension), aortic PWV increases and the reflected 

wave from the lower body returns earlier to the brachial and radial arteries, migrates up the 

pressure wave toward peak systolic pressure and in very elderly individuals (usual >80 yrs) adds 

to the other two waves and increases systolic and PP (see Figure 4.4). Since the aging process 

modifies the distensibility of elastic but not muscular arteries (362;363) the observed 

morphological changes in peripheral artery pressure wave contour are due primarily to reflected 

waves from the lower body. Peripheral augmentation index obtained from the radial pulse is 

highly correlated with central AIx measured invasively and non-invasively (r=0.86 – 0.96) 

(404;454-457) and changes in peripheral augmentation index closely approximate changes in 

central AIx during pharmacologic perturbation (457;458).  Radial augmentation index is 

calculated as the ratio of the late systolic peak of the radial pressure wave to the early systolic 

peak pressure (P2/P1) (see Figure 4.4).  Similar to results obtained from central pressure 

waveforms, radial augmentation index increases with age, is higher in women and is associated 

with height and heart rate (459).   Radial augmentation index has been demonstrated to be 

clinically useful in the prediction of LVH (337) and reveals premature coronary artery disease 

(CAD) in younger men (460). Moreover, peripheral augmentation index defines the relationship 

between central and peripheral PP (457). That is, central augmentation is tightly coupled with 

peripheral amplification as peripheral augmentation index is the amount by which the central 

pressure is reduced relative to peripheral pressure.  A reason for this may be related to timing of 

wave reflections as radial P2 occurs at a time devoid of significant wave intensity (after genesis 

of the forward/compression pressure wave and prior to genesis of a forward expansion wave 

owing to myocardial shortening and subsequent aortic valve closure) (461).  Because of this, it 
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has been postulated that the second systolic peak (late systolic shoulder) of the radial pressure 

waveform correlates well with the second systolic shoulder of the aortic pressure wave (both are 

produced by the same reflected wave from the lower body) (404;462).  Indeed radial P2 has been 

shown to closely approximate central systolic BP in some (457;458;463) but not all studies with 

lower accuracies being reported at lower arterial pressures (463) and in persons with central 

aortic pressure waves where the second systolic shoulder is lower than the first (Type C wave) 

(1;464).  Despite this, radial P2 compliments GTF-derived central aortic pressures and is 

associated with target organ damage (LVH and carotid IMT) independent of brachial blood 

pressure (465).   

 

Effects of Increased Aortic Stiffness and Wave Reflection on the Coronary Circulation  

CFR is defined as the ratio of blood flow at maximal (or near maximal) vasodilation and basal 

(or resting) blood flow (466). Vasodilation results from relaxation of smooth muscle cells of the 

microvascular circulation and is associated with endothelial function. Therefore, in the absence 

of obstructive epicardial coronary artery disease, a reduction in CFR is frequently used as an 

index of microvascular (or endothelial) dysfunction (467-469). CFR is strongly dependent upon 

changes in the plateau level of basal myocardial perfusion. For example, in LVH total basal 

coronary flow is increased but maximal flow does not change, therefore, CFR is reduced 

(466;469-471). To fully appreciate the importance of coronary microvascular physiology, it must 

be realized that coronary blood flow changes dramatically during the cardiac cycle. Since the 

rhythmic contraction of the LV compresses and squeezes the coronary vessels and throttles blood 

flow during systole the majority of flow (about 80 %) occurs during relaxation (or diastole) 

(472).  As central aortic stiffness and wave reflection amplitude increase, central systolic blood 

pressure rises, PP widens, and LV wall stress and myocardial oxygen demand increase while 

aortic diastolic pressure decreases (363;423;473;474). These alterations in pulsatile load cause 

LVH independent of change in the steady load component (322;475). Such abnormalities in 

ventricular/vascular coupling unbalance the favorable myocardial oxygen supply/demand ratio 

and promote myocardial ischemia and contractile dysfunction (1). In the normal coronary 

circulation blood flow is maintained over a wide range of perfusion pressures by the process of 

autoregulation - as perfusion pressure falls vasodilation occurs and maintains a near normal 

coronary blood flow (466;469). Information regarding the ill effects of aortic stiffening and wave 
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reflections on the coronary circulation has come primarily from experimental animal models 

where the dog aorta was artificially stiffened or replaced with a rigid tube (240;476-478). In 

these studies when the heart ejected into a stiff or noncompliant aorta, systolic and PP, wasted 

LV energy and myocardial oxygen demand increased and diastolic pressure decreased but 

coronary blood flow also increased in response to the increased oxygen demand and myocardial 

contractile function was maintained at rest. However, increased aortic stiffness and wave 

reflection caused a decrease in CFR and during increased myocardial contractility endocardial 

blood flow was impaired and the subendocardial electrocardiogram showed signs of ischemia 

(477). These undesirable alterations in ventricular/vascular coupling were enhanced in the 

presence of a high-grade coronary artery stenosis (476) and during reductions in aortic diastolic 

blood pressure (479). During total coronary artery occlusion and myocardial ischemia increased 

aortic stiffness caused marked enhancement in cardiac dysfunction (240). In the acute post-

myocardial infarction period, lowering aortic diastolic blood pressure below 80 mm Hg with 

intravenous nitroglycerine resulted in an increase in myocardial infarct size (480). In more recent 

experimental rat studies, Hachamovitch et al (481), Gosse et al (470) and Susic et al (482;483) 

found that age and hypertension, conditions associated with increased aortic stiffness and wave 

reflection strength, produced LVH and adversely affected the coronary circulation and CFR. 

These changes in coronary hemodynamics in response to increased aortic stiffness increase the 

potential for ischemic episodes, especially in the subendocardial region (481). 

Several studies in humans have confirmed and expanded the findings in experimental animal 

models. The age-related increase in aortic stiffness and wave reflection, in healthy volunteers 

with presumably normal coronary arteries, causes an increase in LV afterload and resting 

coronary blood flow, but a decrease in CFR (484). Similar results have been reported in patients 

with essential hypertension and increased LV mass (485). The majority of older patients have 

increased aortic stiffness and wave reflection which cause increased systolic blood pressure and 

decreased diastolic pressure resulting in isolated systolic hypertension so that aggressive 

treatment to lower blood pressure is more difficult (423;486;487). In patients with LVH and 

significant CAD associated with increased aortic stiffness and wave reflection, acute lowering of 

diastolic blood pressure to less than 85 mm Hg. may increase myocardial ischemic events 

(488;489). These investigators warned against excessive lowering of diastolic blood pressure in 

high risk CAD patients. Is there a point beyond which diastolic blood pressure reduction is 
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dangerous (i.e. is there a J-or U-curve phenomenon for diastolic pressure)? Numerous studies 

and clinical trials have shown a definite J- or U- shape relation between cardiovascular events 

(and outcome) and aortic diastolic pressure during anti-hypertensive treatment (474;490-492). It 

has been postulated that the most probable explanation for this relation is that subjects who have 

severe CAD have a poor CFR (489), which makes the myocardium primarily and linearly 

dependent upon coronary perfusion pressure for myocardial blood supply because autoregulation 

is completely exhausted; however, the jeopardized region may receive some blood flow through 

collaterals (406). In other studies, significant correlations between CFR and increased aortic 

stiffness and wave reflection strength were demonstrated in different patient populations, some 

with (493) and others without (494-497) CAD. The decrease in coronary blood flow and CFR in 

CAD results predominantly from narrowing of epicardial coronary arteries while reduction in 

CFR in patients with normal or non-obstructive CAD is more difficult to explain. Therefore, one 

must consider other factors than coronary artery narrowing such as myocardial oxygen demand 

(498), diastole pressure time index (DPTI) (499), coronary pressure gradient and coronary artery 

endothelial function (microvascular dysfunction) (500). Arterial stiffness and wave reflection 

affect all four of these variables and can readily explain angina pectoris even in the absence of 

macrovascular epicardial coronary artery atherosclerosis (501-504). Increased stiffness of central 

elastic arteries with aging (and hypertension) and/or vasoconstriction of peripheral muscular 

arteries increases central aortic pressure (systolic and pulse) to a much greater extent than 

brachial cuff pressure because of wave reflection (1;330) (see Figure 4.3); central and brachial 

diastolic pressures decrease in parallel. These hemodynamic changes cause an increase in 

myocardial oxygen demand during systole while decreasing coronary artery perfusion in 

diastole. Such chronic changes in LV afterload are associated with a reduced impedance 

mismatch and an undesirable imbalance in the myocardial oxygen supply/demand ratio which is 

exacerbated in LVH and can lead to ischemia and angina even in the absence of coronary 

atherosclerosis (504). Similarly, a marked increase in heart rate in the face of increased aortic 

stiffness can reduce coronary perfusion and precipitate myocardial stunning (505). Aortic 

stiffness and wave reflection can have a profound influence on coronary blood flow and CFR 

through an elevation in systolic pressure, a slowing in LV relaxation and a reduction in diastolic 

pressure (348;506). These effects can be estimated as the “subendocardial viability ratio” 

(DPTI/SPTI) which has been shown to be directly related to CFR (472;507). Clinical information 
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on the effects of arterial stiffness and wave reflection on epicardial coronary artery blood flow 

waveforms and CFR has come from both invasive (Doppler catheter or guidewire) and non-

invasive (transesophageal and transthoracic Doppler echocardiography) measurements 

(467;496;507-509). Regardless of the method used to measure coronary blood flow velocity and 

aortic distensibility, the results are similar: aortic stiffness and wave reflection amplitude are 

both inversely related to CFR in the presence or absence of CAD. Results from the Dallas Heart 

Study (504) showed that angina among women in the general population is common and is not 

necessarily associated with subclinical atherosclerosis. However, angina in the absence of 

subclinical atherosclerosis is not related to traditional atherosclerotic risk factors but is associated 

with clinical, inflammatory, and vascular factors that reflect endothelial dysfunction and 

increased aortic stiffness and wave reflection, suggesting a distinct vascular etiology and 

alternative potential therapeutic targets. Furthermore, coronary microvascular dysfunction in 

some cases, however, may be independent of the endothelium (510). Thus, Reis et al. (511) of 

the Women Ischemic Syndrome Evaluation (WISE) study group reported that of 159 women 

without significant obstructive CAD undergoing invasive studies (velocity guidewire) , 74 (47%) 

had what they defined as subnormal coronary flow responses to intracoronary adenosine 

(CFR<2.5). Age and the number of years postmenopausal correlated inversely with reduced 

CFR, but not lipid and hormone levels, blood pressure, or left ventricular ejection fraction. A 

subsequent report from the WISE study group with 210 women undergoing this testing indicated 

that conventional atherosclerosis risk factors accounted for <20% of the observed variability in 

CFR, suggesting the role of other yet-unidentified factors responsible for microvascular 

dysfunction (512). 

 
Modification of Wave Reflections with Pharmacological and Non-pharmacological 

Interventions  
 

Pharmacological Interventions 

In the evaluation of intervention (pharmacological and non-pharmacological) on cardiovascular 

function any conceptual model (including Windkessel) that excludes wave reflection 

characteristics cannot be regarded as realistic and thus will show serious deficiencies with 

change in cardiac and arterial function (1). Pharmacological interventions (or treatments) which 
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are able to reduce arterial stiffness and wave reflections, the primary cause of elevated systolic 

blood pressure and LVH, include drugs prescribed for the treatment of hypertension, 

hyperlipidemia and heart failure.   

Different cardiovascular drugs have different effects on arterial properties (structure and 

function) and wave reflection characteristics (388;389;513;514). Anti-hypertensive drugs are 

usually classified as vasodilators, aldosterone blockers, β-blockers and diuretics 

(91;435;439;487;515-523). In most countries, thiazide diuretics are the cheapest antihypertensive 

drugs available and they are the recommended first-line treatment for hypertension in the US 

(524).  Diuretics and pure β-blockers decrease blood pressure by decreasing blood volume and 

cardiac output, respectively, but have little, if any, direct (active) effect on arterial properties and 

wave reflection characteristics. Pure β-blockers increase wave reflections while diuretics have no 

effect (388;525). Third generation β-blockers have vasodilator effects mediated by α1-

adrenoceptor antagonism. These agents have been shown to decrease aortic stiffness and reduce 

AIx (526-528).   Selective and nonselective aldosterone blockers attenuate cfPWV and AIx 

(529;530) in select patient groups by increasing nitric oxide (NO) bioactivity and improving 

endothelial vasodilator dysfunction (531) 

Vasodilator drugs include Angiotensin Converting Enzyme (ACE) inhibitors, Angiotensin II 

Receptor Blockers (ARB), Calcium Channel Blockers (CCB), aldosterone antagonists and 

nitrates. Arteriolar vasodilators, such as hydralazine and dipyridamole, primarily increase 

arteriolar caliber and therefore decrease peripheral resistance and mean arterial pressure via their 

action on arteriolar smooth-muscle cells with little effect on aortic wave reflections (532). 

Arterial vasodilators, such as nitrates, primarily relax smooth muscle cells in large conduit 

muscular arteries and therefore decrease arterial stiffness, aortic wave reflection amplitude and 

duration and reduce central systolic and PP with little change in brachial cuff systolic and PP 

(Figure 4.7) (533-537).These drugs are seldom used to treat systemic hypertension except in 

emergencies, however, the combination of hydralazine and nitrates is frequently used in the 

management of heart failure in African-American patients (538). Dual (arteriolar and arterial) 

acting vasodilator drugs such as ACE inhibitors, ARBs and CCBs are the most commonly used 

vasodilators for lowering blood pressure.  Although vasodilators reduce wave reflection 

amplitude and central aortic systolic pressure they probably have little direct effect on stiffness 

of elastic arteries as large as the human aorta independent of blood pressure reduction (1;388) 
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Some studies question this claim (34;539;540). The main finding of the recently reported meta-

analysis that treatment with ACE inhibitors in patients with arterial stiffness caused by different 

pathological conditions improved the stiffening of the arteries as reflected by PWV and reduced 

arterial wave reflections as assessed by AIx when compared with placebo (523).Acute reduction 

in AIx can be achieved by drugs that actively dilate conduit muscular arteries accompanied by 

the passive effects on the aorta (i.e. lowering mean blood pressure) (406).These separate actions 

decrease pressure wave (forward and reflected) propagation along the entire arterial tree and 

improve wave reflection characteristics. Vasodilator drugs reduce wave reflection via delayed 

return of the reflected wave from the lower body to the heart while decreasing its amplitude and 

systolic duration (541-544). Morphologically, the reflected wave (second systolic shoulder) 

which is superimposed upon the aortic pressure wave decreases in amplitude and the wave 

migrates somewhat rightward with vasodilation. These modifications of reflected wave 

characteristics reduce central systolic and PP, AP, AIx, wasted LV pressure energy, and SPTI 

which leads to regression of LVH and improvement in ventricular/vascular function and 

myocardial oxygen demand (545;546).The beneficial effects of these drugs on wave reflection 

characteristics can occur with or without a decrease in aortic stiffness (1;547). Because of wave 

reflections, the effects of vasodilator drugs on brachial and radial artery systolic and PP are much 

less pronounced than their effects on central hemodynamics (1;516). This is illustrated in Figure 

4.8, which shows a hypertensive patient’s response to the ACE inhibitor lisinopril. Lisinopril 

caused a 25 mmHg decrease in brachial cuff systolic blood pressure and a 36 mmHg decrease in 

central systolic aortic pressure; PP amplification increased from 1.2 to 1.5. Differences in central 

and peripheral pressure-lowering effects by vasodilator drugs, as illustrated in Figures 4.7 and 

4.8, strongly suggest that the beneficial cardiovascular effects of vasodilator drugs has been 

grossly underestimated in previous studies that measure brachial artery cuff BP with no central 

aortic pressure determination (519;548-550). This contention was verified in the REASON (ACE 

inhibitor/diuretic combination vs β-blocker) at one year (541;544), CAFÉ (substudy of ASCOT, 

ACE inhibitor/CCB combination vs β-blocker/diuretic combination, duration) at six years (551), 

EXPLOR (CCB/ARB combination vs CCB/β-blocker combination) at six months(552) and 

AORTA (azelnidipine/ARB combination vs amlodipine/ARB combination) at 24 weeks(546) 

clinical trials. ACE inhibitors, CCBs and ARBs (and their combinations) all decreased 

synthesized central aortic systolic and PP significantly by reducing wave reflection amplitude 
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and increasing PP amplification. Also, a more recent randomized trial in patients with chronic 

kidney disease (CKD) reported that the combination of an ACE inhibitor and an ARB 

significantly reduced aortic stiffness and AIx and increased PP amplification (91).  Based upon 

the above observations, the apparent “pressure-independent” benefits of vasodilator drugs in 

clinical trials such as the HOPE trial (ACE inhibitor vs placebo) (548) may occur in response to 

unmeasured but significant reductions in central (but not peripheral) systolic and PP. 

Accordingly, it would be expected that the beneficial effects of ACE inhibitors, including 

regression of LVH (435;545), are not really independent of changes in arterial blood pressure, 

simply that the cuff sphygmomanometer method does not measure the central aortic blood 

pressure (i.e., the pressure the heart pumps against). The same reasoning can easily explain why 

the ARB losartan was more effective than the β-blocker atenolol in reducing LV mass and 

cardiovascular mortality in the LIFE trial (ARB vs β-blocker; duration four years), (553;554) 

even though, after a decade, the authors still will not accept the fact (518;519). In the LIFE trial, 

atenolol and losartan reduced brachial systolic, mean and PP and total peripheral resistance by 

the same amount, however, central aortic blood pressure was not determined. In a similarly 

designed study Dhakam et al (555) found that the ARB eprosartan and atenolol reduced brachial 

cuff blood pressure the same amount but reduced central aortic pressure significantly more. Also, 

in this study wave reflection amplitude was reduced by the ARB but was increased by the β-

blocker.   

 

Non-pharmacological Interventions 

Proposed non-pharmacological interventions which may reduce arterial stiffness (cfPWV) and 

wave reflections (AIx) include aerobic exercise training (556-560) (561;562), dietary changes 

(including weight loss and salt reduction) (438;563-567), passive vibration (568) and enhanced 

external counterpulsation (EECP) treatment (417;569;570). For maximum cardiovascular 

benefits these interventions must be initially introduced acutely but continued over an extended 

period of time.  

During high physical activity or acute bouts of aerobic exercise heart rate, LV contractility and 

stroke volume increase while peripheral arteries and arterioles dilate and thus cause a decrease in 

peripheral arterial stiffness and vascular resistance (376;457;571;572). These changes in 

cardiovascular function cause an increase in peak ascending aortic blood flow and arterial blood 
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volume resulting in an elevation of systole, diastolic, mean and pulse pressures and an 

improvement in wave reflection characteristics. Wave reflection improvement is manifested in 

the aortic input impedance spectrum as a reduction in the lowest frequency harmonic, Z1 

(326;332;333;573) and in wave reflection amplitude (and AIx) (457). In young subjects (dogs 

and humans) aortic stiffness (PWV and Zc) does not change, however, in middle-aged subjects 

there is a paradoxical increase in aortic stiffness and a decrease in wave reflection amplitude and 

vascular resistance; in old age there is also an increase in wave reflection amplitude and wasted 

LV energy (416;574). These alterations in wave reflection characteristics in young and middle 

aged subjects have a favorable effect on ventricular/vascular coupling via a reduction in afterload 

and LV wasted energy and may ultimately have a favorable effect on exercise capacity and 

physical function. The inability to reduce pressure from wave reflections during exercise is 

associated with reduced LV function in patients with heart failure (575).  The CCB verapamil 

has been shown to reduce pressure from wave reflections and this is associated with improved 

exercise tolerance in older adults (576). Reduced wave reflections during and immediately after 

exercise, coupled with increases in peak aortic blood flow (and hence forward wave pressure 

genesis), and increases in heart rate, result in substantial amplification of the pressure pulse wave 

from the heart to the periphery. Aging increases aortic stiffness and results in attenuation of PP 

amplification during exercise owing to lessened reductions in pressure from wave reflections 

(574;577).  Nitric oxide mediated dilation does not appear to be the primary responsible 

mechanism for reductions in wave reflection amplitude and increases in PP amplification during 

acute bouts of light aerobic exercise as NO blockade with N(G)-monomethyl-l-arginine does not 

alter the central hemodynamic response to exercise (578).  During cool-down from submaximal 

exercise heart rate, stroke volume and cardiac output decrease and approach pre-exercise levels. 

Moreover, there are reductions in central artery stiffness and pressure from wave reflections 

because of peripheral vasodilation (579;580). However, following higher intensity dynamic 

exercise such as short sprint cycling, there may be increases in arterial stiffness (581;582). In 

sedentary people with coronary artery disease, coronary thrombosis (and obstruction) is more 

likely to occur during a burst of activity or shortly after it than during a comparable period of 

rest. In people who take regular exercise, coronary occlusion and myocardial infarction are less 

frequent and do not show the increased incidence with exercise (583;584).  
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Multiple studies attest to the benefits of habitual physical activity and regular aerobic physical 

exercise training for vascular health in advanced age, hypertension, diabetes, coronary artery 

disease and heart failure (1;561;571;583;585-594) and to the improvement in oxygen extraction 

from blood, and in cardiovascular function that occur with exercise training. It should be noted 

that not all studies note favorable reductions in arterial stiffness with aerobic exercise training.  

Arterial stiffness may not be modifiable with aerobic exercise training in older obese adults (595) 

or older adults with isolated systolic hypertension (596;597), owing to higher baseline arterial 

stiffness in these populations.  Although isolated reports of increased arterial stiffness in select 

chronically endurance exercise trained populations exist (i.e. marathon runners) (598), the 

majority of cross-sectional studies to date note that habitually physically active individuals, 

individuals with high aerobic fitness and endurance athletes have lower arterial stiffness (higher 

arterial compliance) then their sedentary counterparts (585;587;599-601).  With regard to 

pressure from wave reflections, when performing aerobic (endurance) exercise such as jogging 

or running, fast or brisk walking, swimming or cycling it is important to maintain a continuous 

target heart rate over multiple sessions. Target heart rate is considered 60-80% of one’s 

maximum heart rate (220–age). Cross-sectional studies of aerobic exercise trained individuals 

are conflicting and have reported both reduced pressure from wave reflections (562;574;585), no 

difference (602;603) and increased pressure from wave reflections (377;390). These differences 

in wave reflection characteristics may be linked to lower heart rates in the endurance trained 

subjects. For example in the study by Laurent et al (390), athletes had a higher central systolic 

and PP than sedentary controls but they also had significantly reduced heart rate (– 17 beats/min) 

and aortic PWV (– 2.0 M/sec). The increase in pressure is probably due to an increased P1 

resulting from an increase in peak aortic blood flow. Longitudinal exercise training studies are 

similarly somewhat conflicting and have noted improvements in pressure from wave reflections 

(561;604) or no change (589).  Although endurance exercise training has been shown to reduce 

arterial stiffness and improve peripheral vascular tone and endothelial function, exercise training-

mediated reductions in heart rate (376;377) and improvements in LV contractility (432;590;605-

607) likely equipoise potential to detect a reduction in pressure from wave reflections 

consistently across studies. There is no doubt that weight loss and regular exercise lowers LV 

afterload (static and dynamic components) and heart rate, enhances quality of life and reduces 

morbidity and mortality from cardiovascular events (571;608-611). People who exercise 
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regularly are more likely than those who do not to control their weight and to control other risk 

factors for coronary and other vascular diseases. They are less likely to experience the same 

surge in blood pressure or in heart rate if a burst of exercise is necessary in normal daily 

activities (1). In older individuals, one year of exercise training was found to significantly 

improve physical fitness and lifetime risk for cardiovascular disease without affecting 

endothelial function or arterial stiffness (612). Improved endothelial function with exercise is 

now established (376;377;588;590;605;606;611). The cause of the improvement is probably due 

to the periodic increased shear stress on the vascular endothelium that accompanies exercise 

(613). It is possible that the same mechanism (measured periodic shear stress on endothelium) is 

responsible for the favorable effects of enhanced external counterpulsation (EECP) 

(417;569;570). Improvement in endothelial function in both exercise and EECP (417;561;609) is 

associated with reduction in peripheral PWV and aortic wave reflection amplitude. Improvement 

in endothelial function may explain the benefits of ‘passive exercise’ and of sessions of external 

counterpulsation in refractory angina (568;614). 

Acute resistance exercise imposes a very different stress on the CV system than aerobic exercise.  

While aerobic exercise induces a volume load, on the heart and other organs, resistance exercise 

imposes a pressure load.  Acute resistance exercise increases pressure from wave reflections and 

unlike aerobic exercise, resistance exercise increases aortic stiffness and reduces pulse pressure 

amplification (605;615-617). During resistance exercise skeletal muscle compression of the 

underlying vasculature will create physical reflection sites, altering timing and amplitude of 

pressure wave reflections.  This manifests as an increase in the AIx (615).  During high intensity 

resistance exercise, performance of a Valsalva maneuver becomes unavoidable (618).  

Immediately post-release, strong wave reflections are detected in the aorta (1).  Thus, increases 

in vascular resistance from muscular compression coupled with performance of a Valsalva 

maneuver contributes to increased afterload with this exercise modality via augmentation of 

pressure from wave reflections.  A change in timing of pressure from wave reflections during 

resistance exercise is a strong predictor of LV mass in hypertension (338).   The effect of 

resistance exercise training on central artery stiffness remains controversial.  Cross sectional 

studies have reported lower carotid artery compliance in strength-trained athletes (619).  

However aortic PWV may not be different between strength trained athletes and their sedentary 

peers (620;621) or may even be lower in strength trained athletes (622).  A recent meta-analysis 
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concluded that high intensity resistance exercise training is associated with increases in central 

artery stiffness in those with lower baseline stiffness values (623) although this remains 

contested (376;624-626).  Resistance exercise training has been shown to increase pressure from 

wave reflections (627) but the majority of studies note no effect (376;625;626;628-630).  Studies 

that combine both aerobic and resistance exercise training note no change in central artery 

stiffness (assessed with carotid-femoral PWV or carotid ultrasonography) (631;632) or pressure 

from wave reflections assessed using the augmentation index (633).   

While the effects of exercise on arterial stiffness and wave reflections have been studied for 

more than half a century (634), many aspects still remain unclarified. It appears that the effects 

depend on the type of exercise (aerobic or resistance), on the intensity, on the duration of the 

exercise stimulus (acute versus short-term versus long-term), on the baseline arterial properties 

(stiffer vessels versus more compliant vessels), on the vascular bed assessed (central elastic 

arteries versus peripheral muscular arteries) and on the population studied (younger versus older, 

lean versus obese, normotensive versus hypertensive etc.). Future studies that make use of 

additional technologies and techniques to assess vascular structure, function and wave reflections 

(e.g. MRI, wave separation analysis, wave intensity analysis) may provide some clarity into this 

opaque and ever-evolving literature. 
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ARTERIAL STIFFNESS AND WAVE REFLECTIONS  
Legends 
Figure 4.1  High fidelity pressure (P) and flow (Q) waveforms measured invasively with a multi-
sensory cardiac catheter in the ascending aorta of a middle-aged subject. Pi is an inflection point 
that indicates the beginning upstroke of the reflected pressure wave (second or late systolic 
shoulder) with amplitude AP and duration (ED–Tr). This enclosed area (Ew) represents energy 
wasted by the ventricle during ejection. Tr is the round trip travel time of the forward (or 
incident) wave (amplitude P1, first or early systolic shoulder) from the ascending aorta to the 
major “effective” reflecting site in the lower body and back. The forward and reflected waves 
add together (superposition) to give the measured pressure wave with pulse pressure (PP) = 
(P1+AP). ED is ejection duration. Note that pressure after the inflection point continues to rise 
while flow is decelerating or decreasing. Characteristic impedance (Zc) can be estimated as the 
first systolic shoulder, P1/peak flow, ΔQ. Aortic augmentation index (AIx) = AP/PP (1).  
 
Figure 4.2A Aortic stiffness (carotid-femoral PWV)-related variation in central aortic and 
brachial pulse pressures (PP). As aortic stiffness increases both central (closed bars) and 
peripheral (open bars) PP increase but at different rates because of the influence of wave 
reflection on the central PP. In youth the aorta is compliant and the difference between peripheral 
and central PP is relatively large (18 mmHg); in old age the aorta is stiff and the difference is 
small (5.0 mmHg). Data were collected from 200 normal subjects ranging in age from 18 to 83 
years. Over this life span P1 increased from 26 to 40 mmHg while AP increased from 0.0 to 18 
mmHg. 
 
Figure 4.2B  Aortic stiffness-related variation in pulse pressure (PP) amplification (peripheral 
PP/central PP). As aortic stiffness (carotid-femoral PWV) increases amplification decreases 
(primarily because of the increase in wave reflection amplitude, AP). Data were collected from 
the same group of normal subjects as in Figure 2A. Amplification decreased from 1.7 to 1.1 over 
the life span studied (18 to 83 years).   
 
Figure 4.3  The influence of wave reflections on invasively measured (multi-sensor catheter) 
ascending aortic pressure (P) and flow (Q) waveforms. The reflected pressure wave adds to the 
forward traveling wave by the superposition principle while the reflected flow wave subtracts 
from the forward traveling flow wave. Note that the forward pressure and flow waves are 
identical, as are the reflected waves, except that the reflected flow wave is inverted compared to 
the reflected pressure wave. Pi is the inflection point indicated on the pressure wave (1). 
 
Figure 4.4  Non-invasive recordings of radial artery pressure waves (left) and synthesized 
(mathematical transfer function) aortic pressure waves (right) in three healthy individuals to 
illustrate the age-related changes in wave reflection characteristics, pressure wave shapes and PP 
amplification. Solid arrows identify the peak of the reflected waves from the lower body, and 
broken arrows indicate the beginning upstroke of the reflected waves on the aortic pressure 
waves. Advancing age and increased elastic artery stiffness cause the reflected wave to move 
from diastole where it is beneficial (increased coronary perfusion) to systole where it is 
detrimental (increased myocardial oxygen demand). During this process reflected wave 
amplitude increases from zero to 28 mm Hg in systole resulting in elevated LV load and wasted 
energy and a decrease in PP amplification (Amp). P1 is radial artery pulse pressure and P2 is the 
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reflected wave from the lower body (radial augmentation index =P2/radial P1) (1).  Sp - systolic 
pressure; Dp – diastolic pressure; MP – mean pressure; PP – pulse pressure. 
 
Figure 4.5  Illustration showing changes in the aortic pressure wave which occur during the 
development and progression of LV failure. A). Young normal healthy subject with reflected 
wave occurring predominately in diastole; ejection duration (broken line) is 316 ms, central PP is 
26 mm Hg and SPTI is 2047 mm Hg sec/min. B). During aging and develop of hypertension the 
reflected wave (second shoulder, amplitude 23 mm Hg in this example) occurs almost entirely in 
systole resulting in an increase in AP, AIx, wasted energy, central PP (59 mm Hg) and SPTI 
(3206 mm Hg sec/min) causing LVH which begins the process of systolic heart failure. C). As 
heart failure proceeds reflected wave amplitude (7 mm Hg), AIx, central PP, ejection duration 
(269 ms) and SPTI (2196 mm Hg sec/min) begin to decrease. D). In severe LV failure, AP and 
wasted energy become almost zero, LV ejection is shortened further (235 ms) which causes a 
reduction in SPTI (1535 mm Hg sec/min) (352). HR – heart rate. 
 
Figure 4.6  Measured radial artery and synthesized aortic pressure waves recorded in a heart 
failure patient (53 yo) before (top) and after heart transplantation (bottom). The failing LV could 
not generate enough force to overcome the mid-to-late systolic pressure boost usually seen at this 
age. This reduced contractile force resulted in an abbreviated ED (240 msec) and a low, AP and 
AIx. After heart transplant the LV could again generate the necessary force to overcome the mid-
to-late systolic pressure boost which caused an increase in ED (309 msec), AP and AIx. Heart 
rate was similar before and after transplant (75 b/m) (352).  
 
Figure 4.7  Measured radial artery and synthesized aortic pressure waves recorded in a 
normotensive patient at baseline and after sublingual nitroglycerin (0.3 mg). The drug caused a 
delay in transmission velocity of the reflected wave (Tr increased) from the lower body that 
resulted in a decline of augmented pressure, AP (from 15 to 3.0 mm Hg) and systolic duration. 
These changes caused a reduction in AIx and wasted LV and an increase in PP amplification. 
Aortic systolic pressure decreased 14 mm Hg, while brachial systolic pressure remained 
essentially unchanged (2.0 mm Hg).  
 
Figure 4.8  Measured radial artery and synthesized aortic pressure waves recorded in a 
hypertensive patient at baseline and after four months treatment with the ACEI lisinopril (20 
mg). The drug caused a delay in transmission velocity of the reflected wave (Tr increased) that 
resulted in a decline of augmented pressure, AP (from 24 to 8.0 mm Hg) and AIx (from 33% to 
17%). Systolic duration of the reflected wave decreased (from 211 to 175 msec) causing a 
decline in wasted LV energy. Aortic systolic pressure (SP) decreased 36 mm Hg, while brachial 
systolic pressure was less sensitive, decreasing 25 mm Hg. Diastolic (DP) and mean (MP) 
pressure decreased by the same amount and PP amplification (Amp) increased from 1.1 to 1.4 
(352). 
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SECTION 5:  Arterial stiffness in children 
 
Authors:    Elaine M. Urbina 
 
 

Measures of arterial wall stiffness 

Recent studies of arterial stiffness in youth published since the previous AHA statement on 

vascular assessment are summarized in Table 2 (635).  The most commonly employed 

techniques are carotid ultrasound, echocardiogram for aortic stiffness and tonometry for large 

and small artery elasticity indices. 

 

Global measures 

Few Pediatric studies have evaluated global measures of arterial stiffness in children.  Ahimastos 

et al  (636) calculated systemic arterial compliance with a method combining Doppler and 

tonometery parameters.  They found compliance was lower in pre-pubertal females but this 

gender difference was lost post puberty.  Using impedance cardiography, one investigator found 

higher peripheral resistance index in white prehypertensive adolescents and higher cardiac index 

in blacks (637), the exact opposite relationship that was found in the Bogalusa Heart study with 

cardiac ultrasound measurements (638).  Also using impedance cardiography, a relationship 

between lower birthweight and higher systemic vascular resistance after stress was found (639).  

Systemic vascular resistance measured with this technique improves in pre-hypertensive obese 

adolescents treated with treatment to lower uric acid levels (640).  Higher pulse pressure/stroke 

volume ratio measured at age 11.5 years, which the authors stated reflected increased arterial 

stiffness, was related to smaller fetal size at 35 weeks (641).  Using stroke volume/pulse pressure 

ratio as an estimate of whole body arterial compliance, another group found reduced compliance 

in very low birth weight premature infants at 7 weeks after birth also suggesting early 

programming influences later CV physiology (642).  A few studies have also calculated arterial 

stiffness parameters from ambulatory BP recordings.  The QKD interval is the time between the 

onset of ECG depolarization (Q) and detection of the last Korotkoff sound (K) at the brachial 

artery corresponding to DBP (d).    Although it has not been validated against invasive measures 

of arterial stiffness, QKD is inversely correlated to PWV and other indices of arterial 

distensibility and left ventricular function (643).  Using this technique, children operated on for 
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Cushing’s syndrome (644) had abnormal values as did patients with Williams syndrome (645),  

suggesting increased arterial stiffness as an etiology for the high prevalence of hypertension in 

these patients.  Adolescents who had been operated upon for acromegaly also had higher QKD 

compared to controls (646).  The ambulatory arterial stiffness index (AASI) is calculated as 1 

minus the slope of the regression of DBP on SBP from 24-hour ambulatory BP data.  Arterial 

stiffness measured by AASI was elevated in children with hypertension (647), especially if due 

to aortic coarctation (648).  AASI was also elevated in children with type 1 diabetes mellitus if 

they had hypertension or white coat hypertension (649).  However, it should be noted that AASI 

may represent ventricular-arterial coupling rather than arterial stiffness per se (181). 

 

Hybrid indices 

Augmentation index (AIx), which combines features of wave reflection and arterial stiffness, is 

finding increasing use in pediatric research.  In contrast to PWV where most studies had similar 

findings, the results relating AIx to CV risk factors and high risk disease states is less clear.  

Some disparities may be accounted for by differences in height which is a major determinant 

(650).   Early programming may influence later AIx as there was a negative correlation between 

birth weight and AIx measured in their mothers (651)  and AIx is higher in preterm children 

(652;653)  and those exposed to antenatal steroids (654).   However, the relationship between 

birth weight and AIx in men was lost after adjustment for adult height (655) and adolescent 

offspring of mothers with gestational diabetes had no difference in AIx compared to controls 

(656).   Therefore, it is not clear if early programming has a profound effect on wave reflections 

measured later in life.  

There is a more robust relationship between AIx and CV risk factors.  Young adults with a 

family history of hypertension were found to have higher AIx than subjects with a negative 

history independently of their current BP (657).   When subjects were stratified as normo-, pre- 

or true-hypertensives in one large study of 723 adolescents and young adults, there was a graded 

increase in AIx across the BP strata (658)  although this relationship was not found is a similar 

size European study (659).   Higher AIx has also been found in children with familial 

hypercholesterolemia (660),  obesity (661;662),  poor glucose handling (663),  insulin resistance 

(664),  poor self-esteem (665),  low serum vitamin D (666),  and obesity-related risk factor 
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clustering (667).  Adverse health habits such as inactivity (668;669), or poor diet (670) have also 

been found to lead to higher AIx.  

Limited studies have also been performed in children with renal disease, congenital heart 

disease, and diabetes.  Pediatric dialysis patients had significantly higher AIx than controls (671) 

but unfortunately this may not improve after kidney transplantation (672).  Patients with a 

‘gothic-type’ aortic arch after coarctation repair were found to have elevated Aix (673), as were 

patients with Marfan syndrome (674), and repaired tetralogy Fallot where AIx correlated with 

the sinotubular junction z-score (675).  These results suggest increased stiffness may be involved 

in late aortic complications seen in these lesions.   The most data is available evaluating AIx in 

youth with diabetes (676-679).  Many investigators have found higher AIx in pediatric patients 

with type 1 (680-684), and type 2 diabetes mellitus (661;685), with type 2 diabetics 

demonstrating higher values even with shorter duration of disease (686).  The one study that 

found no difference was substantially smaller (only 45 cases and 42 controls) (687).   Similarly, a 

longitudinal study that did not see an increase in AIx in youth with diabetes over 2.5 year studied 

only 18 subjects (688). 

Even less data is available regarding small and large artery elasticity index in children.  Two 

studies found lower large artery elasticity index with low birthweight (689;690),  and one found 

higher systemic vascular resistance measured with the same tonometry device was associated 

with higher maternal cortisol levels although no mention was made of the elasticity indices that 

are measured simultaneously with the SVR (691).   Normotensive male adolescents and adults 

(16-30 years) with a family history of HTN had lower small and large artery elasticity index but 

no relationship was found in females (692).   Physical activity was related to small artery 

elasticity index in children age 8 to 11 years (693).  There was no difference in elasticity between 

healthy adolescents and those with type 1 diabetes but there was a direct relationship between 

small artery elasticity and body weight status in one (694).  Conversely, another study found 

paradoxically greater small and large artery elasticity index in obese children age 8 to 18 years 

(695) suggesting that these indices may not be as robustly related to CV risk factors in children 

and adolescents as some other measures of arterial stiffness. 

Technical considerations in measurement in children  
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For specific recommendations on measurement techniques reference should be made to the 

previous AHA paper on non-invasive measures in children (635).  

 

Measures of pulse propagation   

The major technical considerations are similar to issues faced when measuring PWV in adults.  

One issue is the lack of equivalence of results using different techniques such as Doppler, 

tonometry, magnetic resonance imaging, photo- or volume-plethysmography or oscillometric 

pressure cuffs (See Table 5.1).  These techniques may use different algorithms for identifying the 

point on the tracing used to define the “foot’ of the waveform.  There are also variations in 

technique for measuring proximal to distal pulse propagation distance (696).  The volume 

plethysmography method for assessing baPWV uses a proprietary algorithm for estimating 

arterial path length that was validated in a Japanese population.  It is not clear that this algorithm 

is applicable to all races/ethnicities as baPWV values are substantially different in American and 

Japanese adolescents (697).  These differences make comparisons among techniques impossible 

even when the underlying technique is similar (i.e. two devices that use tonometery to measure 

carotid femoral may not produce equivalent PWV).  Bland-Altman comparisons were made 

between cfPWV measured in adolescents with a new oscillometric technique and two tonometric 

devices (698).  Although there was excellent agreement, the oscillometric technique 

demonstrated a small but significantly lower PWV at higher PWV values (698).  Also, PWV 

along the aortic path cannot be compared to the higher PWV measured in the smaller peripheral 

(arm and leg) blood vessels.  Separate normal values for each artery need to be used.  

Other issues encountered in pediatrics are difficulty in obtaining complete applanation of an 

artery in younger subjects, inability of children to lay still and lack of appropriate cuff sizes for 

devices that employ them.  However, despite these limitations, studies of pulse wave propagation 

have been published even in toddlers (699) and newborns (700).  Reproducibility has not been a 

major issue with PWV measurements in pediatrics with quality control calculations 

demonstrated coefficient of variability for tonometry based readings of less than 7% (661).  

 

Measures of arterial wall stiffness   

High quality images of the common carotid artery are routinely obtained from older children and 

adolescents with coefficients of variability ranging from 5.3 to 8% (701).  Obtaining images for 
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either B-mode or B-mode guided M-mode of the common carotid artery in younger children may 

be more challenging as the changes in arterial diameter in some studies are measured in 

hundredths of a millimeter (702-704).   If adequate images can be obtained, sonographers should 

be instructed to use the lightest pressure possible in obtaining the image so as not to obscure the 

natural pulsations of the vessel.  An alternative approach is ultrasound imaging of the abdominal 

aorta where intima-medial thickness has been measured successfully in neonates (705), although 

few studies have used these abdominal aorta images to calculate arterial stiffness in children 

(706).  

The non-ultrasound method for measurement of brachial artery distensibility has demonstrated 

excellent reproducibility with coefficients of variability less than 10% (661).  Reproducibility of 

other measures of arterial wall stiffness in children, and the minimum age at which these values 

can be obtained, have not been established.  

 

Hybrid indices 

The major technical limitation in measurement of hybrid indices in children relate to inability to 

achieve acceptable applanation of the smaller arteries in younger children.  Devices which have a 

tonometer in a rigid housing may not be able to achieve high quality waveforms although 

investigators have successfully applied both hand held (680) and device held tonometers (690) in 

children as young as 5 years of age. Reproducibility of pulse wave form analysis may not be as 

high as with PWV, however, investigators have published intra-class correlation coefficients 

between 0.7 and 0.9 when obtained in adolescents (661).  As with other measures of arterial 

stiffness, values obtained in children with different devices are not equivalent as augmentation 

index measured with fingertip tonometry was found to be significantly different from radial 

tonometry (707). 

Another challenge in obtaining high quality measures of augmentation index is the higher degree 

of respiratory sinus arrhythmia in children.  Some subjects may therefore have highly irregular 

pulse making it difficult to obtain 10 seconds of steady wave form data. 

 

Developmental changes in arterial function in childhood 
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Many investigators have found an increase in arterial stiffness from childhood to adolescence 

(97;708-710), including large and small artery compliance (711).  Using MRI, Voges found a 

decrease in descending aorta distensibility and increase in PWV starting at age 2.3 years (712).  

It appears this must relate to changes in the vessel wall since vascular compliance is determined 

by both vessel size and distensibility of the wall and the MRI study demonstrated a steady 

increase in cross sectional area of the descending aorta (with a slight plateauing after 15 years of 

age (712).  Similarly, Senzaki found that although arterial compliance increased from birth to 20 

years, once normalized for BSA to control for differences in arterial size, there was an overall 

decline over this period of time although the rate of change was not constant, with the most rapid 

decline in compliance during periods of most rapid growth from 3 to 7 years of age (713).  

Whether there are gender-related differences in developmental changes in arterial stiffness is less 

clear as Ahimastos found lower systemic arterial compliance and PWV in pre-pubertal girls 

compared to boys with no difference seen post-puberty (714), Fischer found sex differences in 

PWV both pre- and post-puberty (709), and Voges found no difference (712).  Clearly more 

studies defining normal levels for arterial function parameters and better data outlining the 

determinants of increased stiffness across the pediatric age groups are needed. 

Gaps in Knowledge:   

1. Lack of validation:  

While the measurement of PWV has become the leading modality for assessment of arterial 

stiffness in pediatric populations, no validation studies for any of the PWV techniques have been 

performed in youth.  However, there is no reason to believe that the experiments proving 

simultaneous non-invasive measurements of PWV correlated with intra-arterial measurements in 

adults would not apply equally to children.  Furthermore, it would be unethical to subject healthy 

children to such invasive testing for the sole purpose of a validation study.  Additionally, one 

study in children did measure PWV during invasive cardiac catheterization and they obtained 

values similar to those produced with non-invasive devices (715) suggesting the validity of the 

technique in children.  

The non-ultrasound method for evaluating brachial artery distensibility has been validated in 

adults demonstrating excellent correlation between measurements obtained during cardiac 

catheterization (r = 0.83) (716) but this device has not been validated in children. However, there 
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are no assumptions used in the model used to calculate brachial artery compliance (716) that 

would be invalid in children.  However, it is not known if the algorithm used to estimate baseline 

brachial artery diameter from gender, height, weight, and mean arterial BP, which was validated 

using B-mode ultrasound in adults (n = 1,250, R = 0.63, p ≤0.05) (635) will apply equally well to 

children.  Since distensibility is compliance normalized to baseline diameter, if the diameter 

estimation is faulty, erroneous values could result.  

As with other measures of arterial stiffness, no validation experiments have been performed on 

global measures of arterial stiffness.  However, the underlying models relating these non-

invasive measures to invasive measures of arterial stiffness in adults should be valid in children. 

Although no validation of large and small artery elasticity index have been performed, a small 

number of children (N=12, 3-18 years) have participated in a study replicating adult validation 

studies for AIx (717).  Children undergoing catheterization for atrial septal defect closure had 

measurement of pressure wave forms at the ascending aorta with a pressure-type catheter with 

simultaneous radial artery pressure curves obtained with tonometry.  Fast Fourier analyses 

resulted in a transfer function with the same peak at the fourth harmonic (717) as demonstrate by 

O’Rourke et al (718), suggesting the validity of this technique in children of different sizes and 

heart rates.  

 

2. Lack of sufficient normative data by age, body size, pubertal status, gender, and race: 

A few large epidemiologic studies defining normal values for PWV have included children 

(97;204;719;720), however, each had a small sample size for pediatric subjects.  Likewise, many 

pediatric studies using PWV have included small numbers of healthy control subjects (see Table 

5.1).  There are now a number of studies that have published data on larger numbers of healthy 

youth (see Table 5.3).  Furthermore, although some larger studies have sufficient numbers to 

stratify by age, gender and race, covariates known to influence PWV in children, there is lack of 

consistency among techniques so the ‘normal’ values must be interpreted only for the specific 

device used. 

When measuring arterial stiffness by calculations that use change in arterial diameter through the 

cardiac cycle in the calculations, one must be aware that there is a paucity of data examining the 

effects growth on arterial size and a lack of normative data on youth with a wide range of body 

sizes.  
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The only paper purporting to describe normative data on global measures of arterial stiffness in 

youth measured pulse pressure as a surrogate for arterial stiffness.  In this longitudinal cohort of 

healthy youth in Minnesota, pulse pressure was evaluated over multiple visits and gender and 

race differences were explored (721).  

A few studies with over 100 healthy controls age 20 or less have published normal values for 

AIx (Table 5.4).  No normative data on small and large artery elasticity data in pediatric patients 

is available. 

 

3. Lack of longitudinal data in healthy youth 

Little is known about normal vascular aging across childhood and adolescence.  One study did 

repeat PWV in 3 years and they found the increase was greater in males (0.79 + 0.79 m/sec) than 

in females (0.27 + 0.089 m/sec, p < 0.0001) (722).  They also found that adolescents who 

reported lower physical activity had higher PWV at follow-up (722).   More studies are needed 

to elucidate the determinants of accelerated vascular aging in youth.  

 

4. Data in high risk conditions  

While many studies using arterial stiffness in high risk youth have been published in the last few 

years, many disease processes are represented by small numbers of subjects and there is a lack of 

longitudinal data.  

 

5. Effect of intervention 

Few studies have evaluated arterial stiffness with an intervention.  One small study of 15 subjects 

found no improvement in PWV after renal transplant (723).   A randomized trial of 25-

hydroxyvitamin D administration in 49 adolescents aged 16 + 1.4 years demonstrated an increase 

in PWV over the 16 week intervention in the control group (5.38 + 0.53 to 5.71 + 0.5 m/sec) 

with a decrease in PWV in the treatment group (5.41 + 0.73 to 5.33 + 0.79, p < 0.031) (724).  

Clearly, more and larger trials assessing the utility of interventions in improving arterial stiffness 

in youth are needed. 

One study administered atorvastatin to young patients with type 1 diabetics.  They found a trend 

towards decrease in AIx after 12 weeks of treatment (-2.0 ± 7.0. p = 0.06) in this small sample of 

only 45 subjects age 10 to 21 years (725). 
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6. Lack of sufficient correlations to well established pediatric intermediate target organ 

endpoints.   

A few pediatric studies have correlated arterial stiffness with evidence of CV risk factor-related 

target organ damage such as increased carotid intima-media thickness (680;726;727).  More 

importantly, pediatric data is now available relating arterial stiffness measures to LV mass 

(728;729).  Urbina et al (717), combined stiffness measured at the carotid artery with peripheral 

measures including PWV, brachial artery distensibility and augmentation index into a global 

stiffness index.  This index demonstrated a linear relationship with LVM and global stiffness 

index as an independent determinant of LVM even after adjusting for other CV risk factors 

(717).  Similar to findings in adults (730), these data demonstrate the adverse effects of increased 

arterial stiffness and portend a less advantageous cardiac future.  Data relating stiffness to other 

forms of target organ damage such as microalbuminuria, retinopathy, cognitive decline or 

neuropathy are lacking in pediatric patients. 
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Table 5.1.Studies of PWV measured in childhood  

Author, Year PWV Method† Population, 
average age 

Number Results 

Ahimastos, 2003 (636) C-F, F-D, 
tonometry 

Pre-pubertal, 10 
years, post-
pubertal, 16 years 

N = 58 pre-, N= 55 
post-pubertal 

C-F & F-D higher in females pre-pubertal, C-F 
same post-pubertal, F-D higher males post-
pubertal 

Aoun, 2010 (723) C-F, tonometry Children on 
hemodialysis, 11 
years 

N = 15 PWV did not decline after renal transplant 

Arnberg, 2012  (668) C-F, tonometry Obese children, 13 
years 

N = 183 PWV lower in association with higher milk 
intake 

Biglino, 2012 (731) Thoracic aorta, 
MRI 

Children after 
HLHS repair, 3-5 
years 

N = 10, 11 controls PWV higher in patients after HLHS repair 

Briese, 2008 (672) C-F, tonometry Children with 
renal transplant, 14 
years 

N = 36 cases, 49 
controls 

PWV higher with renal transplant 

Buehler, 2012  (732) C-F, photo 
plethysmograph
y 

Children with 
cystic fibrosis, 12 
years 

N = 31, 48 controls Trend for higher PWV in patients 

Canpolat, 2013 (733) C-thigh, volume 
displacement 

Children with 
SLE, 14 years 

N = 24 cases, 36 
controls 

Patients had significantly higher PWV than  
healthy controls 

Celik, 2011 (734) Doppler, Aorta 
from valve to 
diaphragm 

Obese children, 13 
years 

N = 30 cases, 30 
controls 

PWV higher in obese 

Charakida, 2009 (735) C-R, tonometry Children with 
HIV, 11 years 

N = 83 cases, 59 
controls 

PWV higher in HIV 

Chen, 2012 (722) C-F (assumed), 
Tonometry 

Adolescents, 17 
years 

N = 162 PWV increase over 3 years greater in males 
and subjects with decreased physical activity 

Cheung, 2002 (736) B-R, photo- Children with N = 13 cases, 155 PWV higher with vasculitis 
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plethysmograph
y 

polyarteritis 
nodosa, 12 years 

controls 

Cheung, 2004 (737) B-R, photo-
plethysmograph
y 

Children with 
Kawasaki disease, 
9 years 

N = 66 cases, 36 
controls 

PWV higher in Kawasaki disease 

Cheung, 2006 (675) H-F, F-A, 
tonometry 

Children after 
tetralogy of Fallot 
repair 

N = 31 cases, 31 
controls 

PWV higher after tetralogy of Fallot repair 

Covic, 2006 (671) C-F, tonometry Children on 
hemodialysis age 
14 years 

N = 14 cases, 15 
controls 

PWV higher in children on hemodialysis 

Cseprekal, 2009 (738) C-F, tonometry Children after 
renal transplant, 15 
years 

N = 25 cases, 75 
controls 

PWV z-score higher after renal transplant 

Dangardt (739) C-R, tonometry Adolescents, 14 
years 

N = 30 cases, 18 
controls 

PWV lower in obese but measured only C-R 

De Divitiis, 2003 (740) B-R, photo-
plethysmograph
y 

Children & adults 
after coarctation 
repair, 9-58 years 

N = 72 cases, 53 
controls 

PWV higher after coarctation repair 

Detchaporn, 2012  (741) A-F, 
photoplethys-
mography 

Children iwht 
thalassemia, 14 
years 

N = 30, 30 controls Thalassemia patients have higher PWV 

Dietz, 2011 (742) C-F, Doppler 
probes 

Adolescents, 16-21 
years 

N = 157 PWV higher with severe depression 

Dursun, 2009 (743) C-F, Doppler Youth with renal 
disease, 11-15 
years 

N = 70 cases, 18 
controls 

PWV higher in youth with renal disease 

Edwards, 2012 (669) C-F, tonometry Youth, 10-23 years N = 548 PWV higher with lower physical activity 
Gerhard-Herman, 2012 (744) C-F, Echo 

Doppler 
Youth with 
progeria, 3-16 
years 

N = 26 cases, 62 
controls 

PWV higher in patients with progeria 

Gordon, 2013  (745) C-F, tonometry Males who were 
lean, obese or 

N = 9 lean, 11 
obese, 10 T2DM 

Subjects with T2D had lower phospholipid 
content in large HDL particles that was 
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T2DM, age 16-23 
years 

inversely associatedwith PWV.  No association 
with HDL-C 

Grotenhuis, 2008 (746) AA-AD, AD-I, 
MRI 

Youth after 
transposition of 
great arteries 
repair, 16 years 

N = 15 cases, 15 
controls 

PWV higher after transposition of great 
arteries repair 

Harris, 2012  (747) Thoracic aorta, 
Echo Doppler 

Obese age 14 
years 

N = 61 cases, 55 
controls 

PWV higher in obese 

Heilman, 2009 (680) C-F, tonometry Children with type 
1 diabetes, 5-18 
years 

N = 30 cases, 30 
controls 

PWV correlated with diabetes duration. Trend 
for higher PWV 

Herceg-Cavrak, 2011 (748) H-I, 
oscillometry 

Children after 
anthracyclines for 
cancer age 6-20 
years 

N = 53 cases, 45 
controls 

PWV higher after anthracyclines 

Hussain, 2012  (749) MRI along 
thoracic aorta 

Adolescents after 
heart transplant, 16 
years 

N = 10 PWV higher than published normals, 
correlated with coronary artery vasculopathy 
on IVUS 

Im, 2007 (750) B-A, volume 
plethysmograph
y 

Adolescents, 12-18 
years 

N = 262 PWV higher in males, determinants sex, MAP, 
BMI, homocysteine 

Kenny, 2011 (657) H-L, 
oscillometric 

Youth after 
coarctation repair, 
16 years 

N = 29 cases, 20 
controls 

PWV higher after coarctation repair with 
hypertension 

Khadikar, 2012  (751) Ultrasound for 
local PWV 
along carotid 

Indian children 
11.4 years 

N = 140 overweight/ 
obese, 60 controls 

PWV higher in children with metabolic 
syndrome whose parents also have metabolic 
syndrome than in children with metabolic 
syndrome from normal parents 

Kis, 2008 (752) C-F, tonometry Children on 
dialysis, 14 years 

N = 11 cases, 133 
controls 

PWV higher on dialysis 

Klinge, 2009 (753) C-F, C-Ft, C-R, 
tonometry 

Children after 
cardiac transplant, 
13 years 

N = 22 cases, 95 
controls 

PWV higher after cardiac transplant 
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Koopman, 2012  (754) C-F, tonometry Children with 
obesity, age 14 
years 

N = 21, 27 controls PWV higher in obese children 

Kotsis, 2011 (755) C-F, tonometry Healthy subjects, 
21 years 

N = 115 Independent determinants age, 24-hr SBP 
variability. 

Koudsi, 2007 (700) SSN-Ao, infra-
red and 
ultrasound 
probes 

Neonates, 1-3 days  N = 148 PWV lower with higher maternal BP at 28 
weeks gestation. 

Kucerova, 2006 (756) C-F, tonometry Young adults, 24 
years 

N = 174 PWV higher in offspring of hypertensive 
parents,but disappeared with adjustment for 
age and MAP 

Kwok, 2003 (757) B-R, 
photoplethysmo
graphy 

Children with 
primary snoring, 
9-10 years 

N = 30 cases, 30 
controls 

PWV higher in children with primary snoring 

Kyvelou, 2010 (758) C-F, tonometry Young adults, 24 
years 

N = 88 cases, 55 
controls 

PWV higher in offspring with parental history 
of hypertension independent of BP 

Lee, 2007 (759) B-A, volume 
plethysmograph
y 

Male adolescents, 
12-18 years 

N = 256 PWV independently correlated with insulin 
resistance 

Lurbe, 2012 (760) C-F, tonometry Youth, 8-18 years N = 501 PWV showed graded increase across BP strata 
Madhura, 2012  (761) Brachial-finger, 

photo 
plethysmograph
y 

Young adults 18-
25 years 

N = 18 PWV is lowered after 8 weeks aerobic exercise 

McEniery, 2011  (652) C-F, tonometry Adolescents with 
prematurity vs 
controls 

N = 68 cases, 90 
controls 

No difference 

Midei, 2009 (762) C-F, Doppler 
probes 

Adolescents N = 160 PWV higher with higher attachment anxiety & 
hostility 

Miyai, 2009 (763) B-A, volume 
plethysmograph
y 

Adolescents, 15-17 
years 

N = 754 PWV independently determined by age, BP, 
insulin resistance 
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Morley, 2010 (764) C-F, F-D, 
tonometery 

Children, 9 years N= 147 twin pairs PWV higher in offspring of mothers reporting 
2nd trimester alcohol consumption 

Niboshi, 2006 (710) B-A, volume 
plethysmograph
y 

Children, 10-18 
years 

N = 970 PWV higher in boys, increased with age, BP, 
HR. 

Otsuki, 2007 (765) C-F (assumed), 
tonometry 

Athletes, 20 years N = 35 PWV lower with longer duration of exercise 
training 

Ou, 2008 (728) AA-AD, MRI Children after 
coarctation repair, 
12 years 

N = 40 cases, 20 
controls 

PWV higher after coarctation repair 

Ou, 2008 (673) AA-AD, MRI Children after 
coarctation repair, 
16 years 

N = 55 cases, 20 
controls 

PWV higher after coarctation repair in Gothic 
vs. Romanesque arch shape  

Pandit, 2011 (766) Unspecified, 
ultrasound 

Youth, 6-17 years N = 139 cases, 69 
controls 

PWV higher in obese 

Payne, 2007 (674) C-F, tonometry Marfan syndrome, 
26 years 

N = 10 cases, 10 
controls 

PWV no different in in this small study 

Pierce, 2013  (767) C-F, C-R, 
tonometry 

African-American 
Adolescents, 16.9 
years 

N = 227 CF-PWV was 7% higher in overweight or 
obese than in lean subjects 

Riggio, 2010 (660) Calculated from 
Carotid Beta 
Stiffness Index 
from 
Ultrasound 

Children with 
dyslipidemia, 11 
years 

N = 44 cases, 18 
controls 

PWV higher in familial hypercholesterolemia 

Rodrigues, 2011 (768) C-F, tonometry Down syndrome, 
13-42 years 

N = 41 cases, 41 
controls 

PWV lower in Down syndrome, but 
disappeared after SBP adjustment 

Roegel, 1998 (769) C-F, tonometry Young adults after 
coarctation repair, 
21 years 

N = 45 cases PWV lower after coarctation repairbut 
‘normal’ defined in Chinese population using 
Doppler method 

Rossi, 2011 (770) C-R, tonometry Adolescents, 13-14 
years 

N = 49 cases, 41 
controls 

PWV higher with low birth weight due to pre-
term birth, but not with small for gestational 
age. 
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Saiki, 2012 (771) Proximal & 
Distal Aorta, 
micromanomete
r 

Patients after 
tetralogy of Fallot 
repair 

N = 98 cases, 63 
controls 

PWV higherafter tetralogy of Fallot repair 

Sakuragi, 2009 (772) C-F, tonometry Children, 10 years N = 573 PWV has negative correlation with fitness and 
positive correlation with BMI 

Salvi, 2012  (773) C-F, C-R, 
tonometry 

Adolescents 16-20 
years 

N = 558 No relation of PWV to birth weight.  Higher 
C-R PWV with accelerated growth in 1st year 
of life 

Sarkola, 2011 (774) C-F, C-R, F-D, 
tonometry 

Youth after 
coarctation repair, 
16 years 

N = 36 cases, 37 
controls 

PWV higher for F-D only, after coarctation 
repair 

Scherrer, 2012 (775) C-F, tonometry Children 11-12 
years conceived 
with assisted 
reproductive 
technology 

N = 65 cases, 57 
controls 

PWV higher after assisted reproductive 
technology 

Segers, 2006 (776) AA-AD, MRI Marfan syndrome, 
13-54 years 

N = 26 cases, 26 
controls 

PWV higher with Marfan syndrome 

Seki, 2012 (715) Cardiac 
catheterization 

Children after 
tetralogy of Fallot 
repair  

N = 37 cases, 57 
controls 

PWV higher after tetralogy of Fallot repair 

Shah, 2011 (667) C-F, tonometry Adolescents, 10-23 
years 

N = 474 PWV higher with clusters of CV risk factors 

Shah, 2012 (685) C-F, tonometry T2DM, 10-23 
years 

N = 215 PWV higher in African-Americans higher with 
T2DM 

Shah, 2012  (777) C-F, tonometry Adolescents with 
T1DM, 15 years 

N = 225 Adiponectin is not an independent determinant 
of PWV in youth with T1DM 

Shah, 2012  (685) C-F, tonometry Young adults with 
T2DM 

N = 215 African-American young adults with T2DM 
have higher PWV than Caucasian patients 

Stella, 1984 (778) F-Ft, Doppler T1DM, 2-19 years N = 28 cases, 28 
controls 

PWV higher in T1DM 

Song, 2012  (779) Pulse transit Obese boys N = 22 Subjects who underwent aerobic exercise had 
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time, tonometry improvement in arterial stiffness 
Tam, 2012 (656) C-F, tonometry Adolescents of 

mothers with 
gestational DM 

N = 42 cases, 87 
controls 

PWV no different in case vs. control , but 
higher with higher umbilical cord C-peptide 

Tawadrous, 2012  (780) C-F, tonometry Adolescents with 
chronic kidney 
disease 

N = 15 dialysis, 14 
transplant, 15 
controls 

PWV higher than controls for dialysis patients, 
no difference for transplant patients 

Tedesco, 2000 (781) and 2001 
(782) 

C-F, tonometry Neurofibromatosis 
type 1, 12 years 

N = 64 cases, 30 
controls 

PWV no different 

Thurston 2009 (783) C-F, Doppler 
probes 

Adolescents, 18 
years 

N = 159 PWV different in different racial groups 

Urbina, 2010 (681) C-F, tonometry T1DM, 15-18 
years 

N = 535 cases, 241 
controls 

PWV higher with T1DM after age-adjusted 

Urbina, 2010 (661) C-F, tonometry Youth, 10-23 years N = 670  PWV higher in graded fashion from lean to 
obese to T2DM 

Urbina, 2011 (658) C-F, tonometry Youth, 10-23 years N = 723 PWV higher in graded fashion across BP strata 
Urbina, 2012  (664) C-F, tonometry Adolescents and 

young adults, 15-
28 years 

N = 343 Higher PWV seen in obese subjects with 
insulin resistance as compared to obese non-
insulin resistant or controls 

Urbina, 2013 (784) C-F, tonometry Youth, 10-26 years N = 894 PWV higher in graded fashion across tertiles 
of TG/HDL ratio 

Voges, 2013 (785) MRI, thoracic 
aorta 

Young patients 
after arterial 
switch operation 6-
31 years 

N = 51, 34 controls PWV higher in adult patients compared to 
controls but no difference in young patients 

Wadwa, 2010 (686) C-F, tonometry Youth DM, 10-23 
years 

N = 535 T1DM, 60 
T2DM 

PWV higher in T2DM vs. T1DM related to 
CVRF 

Walker, 2013 (786) C-R, tonometry Youth, 12.5 years N = 485 No relations between cardiometabolic risk 
factors and C-R PWV in healthy, lean subjects 

Van de Laar, 2011(787) A-I, A-R, A-D, 
photoplethysmo
grapy 

Smoking at 15 
years, PWV at 23 
years 

N = 424 PWV higher for A-I only with smoking 

Yildiz, 2009 (788) C-F, tonometry Adolescents and N = 29 PWV higher in the morning, negative 
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young adults, 18-
27 years 

correlation with melatonin 

Yildiz, 2010 (789) C-F, tonometry Children with 
epilepsy on 
medication  

N = 59 cases, 23 
controls 

PWV higher if on carbameqepine & valproate 

Yu, 2011 (790) B-A, volume 
plethysmograph
y 

Children with 
glomerulonephritis
, 10 years 

N = 11 cases, 25 
controls 

PWV higher in cases but improves with 
disease abatement 

Yu, 2012 (791) B-A, volume 
plethysmograph
y 

Children with 
T1DM 

N = 87 cases, 21 
controls 

No difference in baPWV between diabetics 
and controls 

Zhu, 2007 (637) C-R, C-Ft, 
tonometry 

Adolescents, 18 
years 

N = 942 PWV higher in whites with pre-hypertension 

Zhu, 2008 (792) C-R, C-Ft, 
tonometry 

Adolescents, 17-18 
years 

N = 702 PWV higher in association with adhesion 
molecule gene polymorphism PWV 

Zhu, 2008 (793) C-R, C-Ft, 
tonometry 

Adolescents, 17-18 
years 

N = 972 PWV higher in obese vs. lean 

†AA-AD = ascending aorta -proximal descending aorta AD-I = proximal descending aorta-abdominal aorta proximal to iliac 
bifurcation, A-D = aorto-dorsalis pedis, A-I = aorto-iliac, A-R = aorto-radial,B-A = brachial ankle, B-R = brachial radial , C-F = 
carotid-femoral, C-Ft = carotid-foot, C-R = carotid-radial, F-A = femoral-ankle, F-D = femoral-dorsalis pedis, H-F = heart-femoral, H-
I = heart-iliac bifurcation, H-L = heart-leg, SSN-Ao = supra sternal notch-abdominal aorta 
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Table 5.2.  Recent studies of Arterial Wall Stiffness in childhood  
 
Author, Year Measure Results 
Banach, 2010  (794) Carotid ultrasound Overweight children have stiffer carotid 
Donato Aquaro, 2011  
(795) 

MRI for aortic 
distenstion 

Distension is lower in adolescents with bicuspid 
aortic valve 

Evelein, 2012  (796) Carotid ultrasound Is higher in children whose parents have higher 
BP 

Evengul, 2012  (797) Echo for aortic 
stiffness 

Adolescent and young adult offspring of 
hypertensive parents have higher aortic stiffness 

Ferreira, 2012  (798) Carotid ultrasound Adolescents with elevated CV risk factors have 
higher carotid stiffness at age 36 years 

Galler, 2010  (799) Carotid ultrasound Children with T1DM have increased aortic 
stiffness 

Gardner, 2013  (800) Small and large 
artery elasticity 
index 

No difference in elasticity between youth with or 
without metabolic syndrome 

Geerts, 2012  (801) Carotid ultrasound Obese children have stiffer carotid 
Geerts, 2012  (802) Carotid ultrasound Children of mothers who smoked during 

pregnancy had less distensible carotid 
Harris, 2012 (747) Carotid ultrasound Excess early postnatal weight gain leads to stiffer 

carotid 
Holmquist, 2012 (803) Carotid ultrasound Elasticity is lower in youth with T1DM with 

lower levels of urine excretion of glutathinone S-
transferase 

Iannuzzi, 2010 (804) Carotid ultrasound Children living near main highways had stiffer 
carotid 

Iwashima, 2011 (805) Carotid ultrasound Adiposity correlates with carotid stiffness 
Jin, 2013 (806) Carotid ultrasound Obese youth have stiffer carotid 
Maurice, 2012 (807) Echo for aortic 

stiffness 
Aortic stiffness is higher after Kawasaki disease 

 
 



Townsend RR, et al. – Page | 101 
Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness 
© 2015 by the American Heart Association, Inc. 
Nettlefold, 2012 (693) Small and large 

artery elasticity 
index 

Physical activity is related to small but not large 
artery elasticity in healthy children 

Oliviero, 2010 (808) Ultrasound for 
brachial 
distensibility 

Congenital hypothyroid patients had lower 
distensibility 

Oyamada, 2012 (809) Echo for aortic 
stiffness 

Children with Kawasaki disease have altered 
elastic properties compared to controls 

Ozari, 2012 (810) Carotid resistance 
index from Doppler 

Resistance index is higher in young adult males 
who are obese 

Ozecetin, 2012 (811) Carotid ultrasound Carotid stiffness is higher in obese children 
Pac, 2010 (812) Echo for aortic 

stiffness 
Aortic stiffness is higher in obese children 

Pandit, 2011 (766) Carotid ultrasound Carotid stiffness is higher in obese children 
Pees, 2012 (813) Echo for aortic 

stiffness 
Children with bicuspid aortic valve have stiffer 
aorta 

Santarpia, 2012 (814) Echo for aortic 
stiffness 

Bicuspid aortic valve is associated with higher 
aortic stiffness 

Strambi, 2012 (815) Small and large 
artery elasticity 
index 

Elasticity is impaired in children and adolescents 
born small for gestational age 

Tierney, 2013 (816) Carotid pulsatility 
index from Doppler 

Subjects with Kawasaki disease have higher 
pulsatility index  

Tryggestad, 2012 (695) Small and large 
artery elasticity 
index 

Obese youth had higher elasticity. 

Urbina, 2009 (701) Carotid ultrasound Carotid stiffness higher in youth with obesity or 
T2DM compared to controls 
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Table 5.3Published Pediatric PWV normal values* 

Author, Year Method† Age (yrs)  
Mean ± SD 

Number PWV (m/sec) 
Mean ± SD 

Ahimastos, 2003 (636) C-F, F-D, 
tonometry 

12.9 ± 0.2 N = 58 pre-, N= 
55 post-pubertal 

4.1 to 8.2 

Avolio, 1983 (719) Doppler 
ultrasound 

Chinese 
subjects 
3 - 20 

108 6.2 to 10.2 

Avolio, 1985 (97) Doppler 
ultrasound 

Chinese 
subjects 
0.2 - 20 

125 4.4 to 7.9 

Collins, 2008 (817) B-A, volume 
plethysmogra
phy 

15.8 ± 2.4 
15.9 ± 2.5 

Male = 99  
Female = 106 

10.9 ± 1.4 
10.4 ± 1.3 

Collins, 2009 (697) B-A, volume 
plethysmogra
phy 

12 – 17 83 Americans age 
12-14 
 
                  15-17 
 
390 Japanese age 
12-14 
 
15-17 

 
Male = 10.48 + 1.26 
Female = 10.23 + 10.7 
Male = 11.15 + 1.37 
Female = 10.35 + 1.47 
Male = 9.47 + 1.17 
Female = 9.32 + 1.18 
Male = 10.41 + 1.07 
Female = 9.52 + 1.03 

Fischer, (818) C-F, 
oscillometric 

5-19.6 Male =    156 age 
                5-8.3  
                8.4-10.8 
                10.9-
14.1 
                14.2-
19.6 
Female = 158 age 

Also table by sex, age, height 
4.1 (3.4-5.0) 
4.4 (3.6-5.1) 
4.7 (3.8-5.7) 
5.3 (4.2-6.2) 
 
4.1 (3.4-5.4) 
4.2 (3.4-5.4) 
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                5-8.3  
                8.4-10.8 
                10.9-
14.1 
                14.2-
19.6 

4.5 (3.4-5.9) 
4.8 (3.4-5.8) 

Ge, 2007 (819) C-Ft, C-R, 
tonometery 

11.9 - 30  White male = 214 
White female = 
199 
Black male = 129 
Black female = 
160 

7.15 + 0.91 
7.03 + 0.84 
7.10 + 0.83 
7.20 + 0.81 

Hidvegi, 2012 (820) ‘Aortic’ 
(sternal notch 
to pubic bone) 

3-18 Boys = 1802 
Girls = 1572 

5.5 + 0.3 to 6.5 +0.3 
5.6  + 0.3 to 6.4 + 03, see 
tables for normal by age 

Im, 2007 (750) B-A, volume 
plethysmogra
phy 

14.5 ± 1.2 
14.8 ± 1.5 

Male = 178  
Female = 84 

10.3 ± 0.9 
  9.6 ± 1.7 

Jo, 2010 (821) AA-AD, 
Doppler 

1 month-15.8 
yrs (mean 6.8 + 
4.7) 

206 3.07 (2.99-3.15) 

Kis, 2008 (752) C-F, 
tonometry 

6 - 23 133 5.02 + 0.89 

Kotsis, 2011 (755) C-F, 
tonometry 

21 + 1 115 8.1 + 2 

Koudsi, 2007 (700) SSN-Ao, 
infra-red and 
ultrasound 
probes 

Neonates 1-3 
days old 

148 Maternal SBP < 108 mmHg = 
4.77 + 0.55; > 108 mmHg = 
4.41 + 0.59 

Kracht, 2011 (696) C-F, 
oscillometric 

11.1 + 2.9 156 4.3 + 0.6 

Lurbe, 2012(659) C-F, 
tonometry 

8 - 18  424 4.96 + 1.1 
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Miyai, 2009 (763) B-A, volume 

plethysmogra
phy 

15 – 17 754 subjects age 
15 
 
16 
 
17 

 
Male = 9.79 + 1.21 
Female = 9.34 + 0.97 
Male = 10.02 + 1.05 
Female = 9.71 + 0.96 
Male = 10.52 + 1.02 
Female = 9.80 + 0.94 

Niboshi, 2006 (710) B-A, volume 
plethysmogra
phy 

Japanese 
children 
14.8 ± 2.5 
14.5 ± 2.6 

 
Male = 500 
Female = 470 

 
9.97 ± 1.3 
9.47 ± 1.2 

Reusz, 2010 (822) C-F, 
tonometery 

6.5 – 19.9 1008 subjects age 
6.55 – 9.91 
 
9.92 – 13.27 
 
13.28 – 16.63 
 
16.64 – 19.9 
 

Also table of PWV by age, ht, 
sex 
Male = 4.396 (3.106-5.902) 
Female = 4.496 (2.809-5.801) 
Male = 4.740 (3.275-6.391) 
Female = 4.779 (3.552-6.826) 
Male = 5.243 (3.640-8.021) 
Female = 5.113 (3.955-6.983) 
Male = 5.538 (3.725-7.999) 
Female  = 5.335 (3.181-
7.634) 

Sarkola, 2012 (823) C-F, C-R, F-
Ft, tonometry 

5-18 years N = 97 subjects 
5 – 9  
10-14 
15-18 
 

 
C-F 4.4 + 0.9 
C-R 6.6 + 1.3 
C-F 4.5 + 1.0 
C-R 6.3 + 1.1 
F-Ft 7.1 + 1.5 
C-F 5.5 + 0.8 
C-R 6.4 + 0.8 
F-Ft 6.7 + 1.3 

Urbina, 2010  (661;681) C-F, C-R, F-
Ft, tonometry 

10 - 23 years 241 lean, non 
diabetic  

C-F = 5.4 + 0.7 
C-R = 7.4 + 1.1 
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F-Ft = 8.0 + 1.2 
Urbina, 2012 (664) C-F, 

tonometry 
15 – 28 232 lean, non-

insulin resistant 
5.85 + 0.85 

Voges, 2012 (824) MRI, thoracic 
aorta 

16.4 + 7.6 71 3.6 + 0.7 

Zhu, 2007 (637) C-Ft, C-R, 
tonometry 

17.6 + 3.3 Normotensive 
White = 474 
 
Black = 353 

 
C-Ft = 7.0 + 0.1 
C-R = 6.2 + 0.1 
C-Ft = 7.2 + 0.1 
C-R = 6.7 + 0.1 

*Only considered publications with sample size above 100 for healthy subjects, where raw PWV value was supplied.   
†AA-AD = ascending aorta -proximal descending aorta AD-I = proximal descending aorta-abdominal aorta proximal to iliac 
bifurcation, B-A = brachial ankle, B-R = brachial radial , C-F = carotid-femoral, C-Ft = carotid-foot, C-R = carotid-radial, F-A = 
femoral-ankle, F-D = femoral-dorsalis pedis, F-Ft = femoral-foot, H-F = heart-femoral, H-I = heart-iliac bifurcation, H-L = heart-leg, 
SSN-Ao = supra sternal notch-abdominal aorta 
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Table 5.4.Normal values for AIx in adolescents and young adults. 
 
  

Author, Year Method Age (yrs)  
Mean ± SD 

Number AIx (%) 
Mean ± SD 

Lurbe, 2012 (659) Radial artery 
tonometry 

12.2 + 2.2 424 1.31 + 15.4 

McEniery, 2005 
(204;825) 

Radial artery 
tonometry 

18-20 Males = 172 
Females = 133 

-2 + 8  
5 + 10 

Urbina, 2010 (661) Radial artery 
tonometry 

17.8 + 3.5 241 -0.52 + 10.8 

Urbina, 2012 (664) Radial artery 
tonometry 

20.8 + 2.6 232 -0.48 + 11.31 
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SECTION 6:  Validation of Arterial Stiffness Devices 
 
Authors:    Thomas Weber, Samer S. Najjar, Alberto Avolio 
 

 
When facing the question of validation of devices and methods, some questions need to be 

addressed: 

1. Is there a “gold standard“ of measuring pulse wave velocity? 

2. Are there studies comparing different methods and devices? How should the results be 

reported? 

3. Are there any studies showing the clinical value of different methods and devices? 

4. Special considerations 

 

6.1 What is the “gold standard“ of measuring aortic pulse wave velocity? 

• Invasive aortic PWV? 

• Magnetic resonance imaging based PWV? 

• Simultaneous acquisition of pressure (distension, flow) waves at carotid and femoral 

artery 

• Dedicated carotid-femoral PWV devices? 

• Is there a gold-standard of measuring travel distance non-invasively? 

 

6.1.i Invasive aortic PWV: 

This measurement has the advantage of being a simple, straightforward technique (measuring 

transit time (TT) simultaneously or ECG triggered and travel distance (TD) from catheter 

length). Of note, pressure waves measured at different points in the aorta travel only in one 

direction along the aorta, yielding a physiologically correct measurement. However, true 

invasive aortic PWV has been reported rarely and for obvious reasons only in patients scheduled 

for coronary angiography (185;232;365;826-829).  So far, one study investigated its relationship 

to clinical outcomes (232).  

 

6.1.ii Magnetic resonance imaging based aortic PWV: 
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With this technique, TD can be measured very accurately due to many precise 3 dimensional 

imaging approaches. TT can be estimated, using dedicated sequences to derive flow signals. 

Flow signals as measured travel along the aorta in only one direction along a single path, 

yielding a physiologically correct measurement. However, the temporal resolution for TT 

assessment is relatively low in comparison to the other techniques, although this has been 

improved recently (830). The reproducibility and the accuracy with respect to invasive 

measurements may also depend on the methods used to determine TT (831;832), and to date 

there is no consensus on the best method to be used. Finally, there are no published studies 

relating MRI-based aortic PWV with cardiovascular endpoints. 

 

6.1.iii Simultaneous acquisition of pressure waves at the carotid and femoral artery: 

There are no studies showing the superiority of simultaneous measurements as opposed to 

sequential (ECG-triggered) recordings. When the sequential recordings are made a short time 

apart, heart rate variability or the change in the isovolumic period probably have no or only 

minor effects on measured TTs (135), as long as a regular rhythm is present. In the presence of 

arrhythmias, measurements may be unreliable due to different intervals from ECG´s R-wave to 

the foot of the travelling wave. 

 

6.1.iv Can dedicated devices for the measurement of cfPWV be recommended as non-

invasive gold-standard? 

Clearly, validation studies using invasive aortic PWV as reference are limited to patients 

undergoing cardiac catheterization on clinical indications, thus limiting such studies to a 

relatively small group of patients. When MRI-based aortic PWV is considered as reference, the 

dedicated MRI environment often will preclude simultaneous measurements (the same is true for 

invasive aortic PWV). In addition, some questions with respect to temporal resolution remain to 

be solved. For these reasons, it seems reasonable to perform validation studies against dedicated 

devices, which have been used widely in prospective trials showing an independent prognostic 

value of cfPWV (Complior device, ALAM medical; SphygmoCor device, AtCor medical).  

 

6.1.v. Standardization of methods for comparison of devices 
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Because of the expansion of the field for non-invasive assessment of vascular function, devices 

are being constructed with varying pulse sensing techniques and signal processing algorithms. 

For proper and useful comparison of devices, there is a need for standardization of procedures 

and protocols. Such activities generally come from learned societies in the form of “Guidelines”. 

For comparison of PWV devices, the Society for Artery Research has published specific 

guidelines for device validation (833). There are tables for sample size (90 subjects selected with 

a minimum of 83 for data analysis), age range (at last 25 in age range <30, 30-60, >60 years) and 

exclusion criteria (eg absence of sinus rhythm, significant arterial stenosis). There is also a 

specific description of the order of measurements between the devices so as to avoid the 

possibility systematic errors. A classification is also provided based on the variability of mean 

difference (MD) and standard deviation (SD) in relation to a reference device. 

This protocol was recently used for the first time to validate a cuff based device (SphygmoCor 

XCEL ®) for detection of carotid femoral pulse transit time, with the aim to provide similar 

cfPWV values as those obtained with a femoral tonometer (SphygmoCor) (128). When the cuff 

measurement of pulse transit time was corrected for the distance between the femoral site and the 

position of the cuff on the upper thigh, both devices gave similar cfPWV (R2 = 0.9) with MD of 

0.02 m/s and SD of 0.61 m/s. 

 

6.1.vi  The problem of non-invasive estimation of travel distance for cfPWV measurement: 

In the measurement of cfPWV, the major source of inaccuracy lies in the determination of the 

TD of the pressure or flow waves (834). First, measurements on body surface may not reliably 

represent the true length of the aortic and arterial segments, especially with obesity and when the 

arteries become more tortuous with age (355). Second, by definition, cfPWV encompasses not 

only the aorta, but also segments of the carotid artery and of the iliac and femoral arteries, which 

differ with respect to their elastic properties (and their local PWVs) from the aorta, even more so 

during aging. Moreover, the proximal part of the aorta (the most elastic one), which undergoes 

marked changes with aging (355), is not covered. Finally, by definition, cfPWV encompasses the 

travel of the pulse wave up to the carotid artery and down the thoracic aorta at the same time, 

thus being not a simple unidirectional path length (835), thereby rendering all determinations of 

the “real“ travelled path length somewhat elusive. Even sophisticated MRI-based measurements 

are valid only based on the assumption that the velocities in the carotid artery and in the thoracic 
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aorta are the same, which actually may not be the case. In animals, PWVs in the carotid artery 

can be 2-3 m/sec higher than in the aortic arch (836), and in humans the differences between 

aortic and carotid stiffness are higher in patients with hypertension and diabetes (837). Whether 

these differences can affect the actual cfPWV by 2%, or up to 10%, has been recently discussed 

(838). However, some standardization is obviously necessary, and comparisons with invasive 

PWV and MRI-PWV have been made: In 135 patients undergoing invasive coronary 

angiography, the “subtraction method“ (SSN-femoral artery minus SSN-carotid artery) resulted 

in the smallest differences (0.2 m/sec) between invasive aoPWV and non-invasive cfPWW(185), 

whereas the direct distance method overestimated aoPWV by 2.9 m/sec. When the same TT 

(carotid-femoral TT derived from tonometry) was used, and TD was measured with MRI (aortic 

arch to femoral recording site minus carotid length from origin to recording site; again assuming 

equal velocities in carotid artery and aortic arch), the surface measurement closest to MRI TD 

estimate was carotid-femoral minus SSN-carotid (355). In another study, using MRI as reference 

for TD measurement (ascending aorta-femoral artery minus ascending aorta-carotid artery), the 

best estimate, as measured on body surface, was carotid-femoral distance multiplied by 0.8 

(839). In all 3 studies, the direct carotid-femoral measurement led to a substantial overestimation 

of aoPWV. Although conversion factors between the different cfPWV values obtained with 

different methods to assess TD are available from collaborative projects (840), this panel 

recommends to use either the “subtraction method“ (suprasternal notch – femoral recording site 

minus suprasternal notch – carotid recording site) or the “80 % method“ (80% of the measured 

direct distance between carotid and femoral recording site) to estimate TD for cfPWV.  

 

6.2. Comparison between different methods and devices, accuracy, repeatability, 

reproducibility 

There are several studies published comparing different methods to measure PWV (Table 6.1). 

When invasive and MRI measurements of aoPWV were compared, mean differences from as 

low as 0.2 (831) and 0.3 (167) m/sec to as high as 1.87 m/sec (829) have been reported, as well 

as correlation coefficients from 0.26 9 to 0.71 (831). 

When invasive aoPWV and non-invasive (tonometer- or mechanotransducer-based) cfPWV or 

baPWV was compared, differences could be attributed to 1) measurements at different time 

points, 2) measurements of different arterial segments, and 3) different methods of non-invasive 
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TD estimation (185). Mean differences ranged from 0.2 to 2.9 m/sec (185), and correlation 

coefficients typically were in the range of 0.7 – 0.87 (144;185;829). 

When MRI-based aortic PWV and tonometer- or mechanotransducer-based cfPWV was 

compared, differences could be attributed to 1) measurements at different time points, 2) 

measurements of different arterial segments, and 3) different methods of non-invasive TD 

estimation. Mean differences ranged from 0.12 (841) to 1.7 m/sec (830), when cfPWV was 

compared with MRI-based PWV of the entire aorta, and from 2.46 (842) to 3.1 m/sec (424), 

when MRI-based aortic arch PWV was compared to cfPWV. Correlation coefficients ranged of 

0.43 (841) to 0.83 (842). 

The results of validation studies should be presented using the method of Bland and Altman 

(130), where the difference between the values obtained with the two devices is plotted against 

the mean value of both devices. The plot then shows the mean difference between the two 

methods / devices and the +/- 2 standard deviation – boundaries. Excellent, acceptable, and poor 

accuracy may be defined as in Table 6.2 (833). Moreover, any systematic bias with respect to 

one method will be evident from the plot. Special consideration should be given to the issue of 

TD estimation, as different estimations between the devices will result in systematic over- or 

underestimation of cfPWV.  

The same criteria may be applied to intra- and interobserver repeatability / variability as well as 

reproducibility (two measurements separated by at least 24 hours). 

 

6.3. Clinical validation: Which devices and techniques have been used in the clinical 

endpoint-studies? 

Evidence today clearly shows that measurement of cfPWV is a potent and independent marker of 

cardiovascular risk and mortality. Data from > 25 clinical studies provide significant support for 

this statement. In this sense, measurement of cfPWV per se has been validated for risk 

stratification (Table 6.3).  

We also have > 10 studies (although most of them with small sample size and few outcome 

events) reporting an association between baPWV and CV outcomes, with 2 negative studies. One 

limitation is that all studies have been performed in Japanese patients. Furthermore, TD for 

baPWV can obviously only be estimated, as there is of course no direct unidirectional 

propagation of pressure or flow from brachial to ankle. The formula used in the systems is based 
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on anthropometric data from Japanese individuals. In this sense, baPWV has been incompletely 

validated, particularly outside Japan, to predict CV outcomes.  

 

6.4. How to deal with 

• devices providing estimates of aortic PWV, using one-point measurements 

(Arteriograph, Mobil-O-Graph) 

• local arterial stiffness (search terms: “local arterial stiffness“ “wall tracking“ “echo 

tracking“ “carotid stiffness“, “arterial distensibility“ “carotid distensibility“ “elastic 

modulus“ 

 

6.4.i  Systems providing estimated aoPWV from waveform analysis:  

There is some interest in techniques estimating aortic PWV from waveforms analysis, which 

would simplify the procedure. One device, the Arteriograph (Tensiomed), has been validated 

invasively (843): mean difference between invasive measurement and non-invasive estimate 0.05 

m/sec, R=0.91) and non-invasively (844), although the working principle has been questioned on 

the basis of computer models (845). Furthermore, outcome studies with this particular device are 

pending. Another device, the Mobilograph (I.E.M., Germany), estimates aoPWV from wave 

separation analysis, age and blood pressure. A recent study (146) found acceptable agreement 

with tonometry (SphygmoCor, Australia) (mean difference 0.3 m/sec, SD 1.1 m/sec). One small 

study in patients with chronic kidney disease NKF stage 2-4 has already shown the independent 

prognostic value of estimated aoPWV (measured with the Mobil-O-Graph device) with respect 

to mortality (846).  Although these devices hold a great potential for simplifying the 

measurement of PWV and, thus, enabling its use in clinical routine, currently due to the lack of 

evidence, no recommendations can be given. 

 

6.4.ii  Local (Carotid) arterial stiffness  

 

Measurements of local arterial (carotid) stiffness relate changes in diameter to changes in local 

pressure. Diameters and their changes throughout the cardiac cycle can be measured, using B-

mode ultrasound and video-image analysis, where precision is limited by pixel size (roughly 150 

µm) (135).  Nowadays, Echo-tracking devices are preferred, which allow a 6-10 times higher 
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precision (158).  In addition, local pressures (instead of brachial pressures) are necessary for 

calculations of the various parameters of carotid artery and wall stiffness. A list of invasive 

validation studies for central pressures has been published recently (847).  As far as carotid 

stiffness is concerned, no invasive validation studies are available so far. Table 6.4a shows 

comparative studies between different devices.  They reveal that echo-tracking devices are more 

precise than B-mode based techniques, and that measures cannot be easily compared, when 

obtained with different techniques. 

With respect to outcomes, in 8 out of 11 studies listed in Table 6.4, one or more of the arterial 

parameters listed had no relationship with outcome.  
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Table 6.1: Comparative studies using different techniques to measure PWV 
 
Author n Method 1 Method 2 Mean difference (1 

minus 2) / 2 SD 
m/sec 

Correlation 
coefficient 

Dogui 
(848) 

46 MRI aortic arch 
PWV 

Applanation 
tonometry cfPWV. 
TD: SSN-fem 
minus SSN-car 

- 2.73 / n.a. 0.69 

Joly (841) 32 MRI PWV (aortic 
arch-mid-
descending aorta) 

1. Applanation 
tonometry (Pulse 
Pen) 2. 
Mechanotransduce
rs (Complior) 
cfPWV each. TD: 
SN-fem minus 
SN-car 

1. – 1.01 / 4.13 
2. 0.12 / 3.8 

1. 0.47  
2. 0.43 

Salvi 
(849) 

50 2 tonometers 1. Applanation 
tonometry (Pulse 
Pen) 2. 
Mechanotransduce
rs (Complior) 
cfPWV each.  

1. -0.15 / 0.62 
2. 2.09 / 2.68 

1. 0.99 
2. 0.83 

Rogers 
(850) 

24 MRI PWV (aortic 
arch – abdominal 
aorta) 

Tonometry (Millar 
SP 301) carotid-
fem TD: 
manubrium-fem 
minus 
manubrium-car 

0.3 / n.a. n.a. 

Dogui 
(842) 

50 MRI aortic arch 
PWV (4 methods 
for TT estimation) 

Applanation 
tonometry cfPWV 
(Pulse Pen 
device); TD: SSN-
femoral minus 
carotid-SSN 

-2.48 / -2.86 / -2.46 
/ -2.46 // SDs n.a. 

0.70 / 0.69 / 
0.34 / 0.59 

Grotenhui
s  
(167) 

18 Invasive aoPWV 
(total/proximal/dis
tal aorta) 

MRI aoPWV 
(total/proximal/dis
tal aorta) 

-0.4 / -0.3 / -0.8// 2 
S.D.s 2.0 / 2.0 / 1.6 

0.53 / 0.69 / 
0.71 

Westenber
g  
(831) 

17 Invasive PWV (ao 
arch) 

MRI PWV ao arch  
1. in plane VE 
2. through 

plane 

1. 0.2 / 3.2 
2. 1.3 / 3.4 

1. 0.69 
2. 0.26 

Hickson  
 
(830) 

15
7 

MRI PWV (entire 
aorta) 

1. Cf PWV 
tonometry 
(SphygmoC

1. 1.7 / 3.2 
2. 1.4 / 3.4 

3. 0.71 
4. 2. 

0.64 
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or) TD: n.a. 
2. Cf Cuff 

(Vicorder) 
TD:n.a. 

Redheuil  
 
(424) 

11
1 

MRI PWV (aortic 
arch)  

Tonometry Cf 
PWV TD: SSN-
fem minus SSN-
car 

-2.7, -2.8, -3.2, -2.3, 
-3.1, -2.7 in 
3rd,4th,5th,6th,7th,
8th decade 

0.71 

Salvi 
 
(138) 

68 2 tonometers 
(simultaneous 
measurement). 
TD: SSN-fem 
minus SSN-car 

Consecutive ECG 
triggered 
applanation 
tonometry (Pulse 
Pen). TD: SSN-
fem minus SSN-
car 

-0.17 / 1.2 0.98 

Hickson  
 
(851) 

12
2 

Consecutive ECG 
triggered 
tonometry 
(SphygmoCor). 
TD: SSN-fem 
minus SSN-car 

Simultaneous 
cuffs around neck 
and upper thigh 
(Vicorder). TD: 
SSN – top of thigh 
cuff 

0.31 / 3.08 0.85 

Weber  
 
(185) 

13
5 

Invasive aoPWV 
(ao arch-
bifurcation) 

Consecutive ECG 
triggered 
applanation 
tonometry 
(SphygmoCor).  
TD: 1. SSN-fem 
minus SSN-car 
2. direct distance 

1. -0.2 / 3.1 
2. -2.9 / 3.4 

1. 0.76 
2. 0.73 

Podolec  
 
(829) 

10
7 

Invasive aoPWV 
(aortic bulb-
bifurcation) 

Mechanotransduce
rs (Complior). 
TD.:direct 
distance 

- 1.87 0.70 

Yamashin
a  
(144) 

41 Invasive aoPWV 
(ascending aorta – 
50 cm distal) 

baPWV 
(PWV/ABI Colin 
Co.) 

n.a. 0.87 
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Table 6.2: Accuracy criteria  
 
Excellent: mean difference < 0.5 m/sec and SD < 0.8 m/sec 
Acceptable: mean difference < 1 m/sec and SD < 1.5 m/sec 
Poor: mean difference > 1 m/sec or SD > 1.5 m/sec 
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Table 6.3 Predictive value of carotid-femoral  as well as brachial-ankle pulse wave velocity in 
clinical studies with cardiovascular events as outcomes measures. 

 
First 
author 

Journal Publicat
ion year 

Populatio
n 

n Primary 
outcome / 
significanc
e 

Method 
used for 
cfPWV 
measureme
nt 

Method 
used for 
travel 
distance 
assessment 

Carotid-femoral PWV 
Verbeke  
 
(441) 

Hypertensi
on 

2011 Renal 
transplant 
recipients 

512 CV events Tonometry 
/ 
(SphygmoC
or) 

80 % direct 
distance cf 

Laurent  
 
(133) 

Hypertensi
on 

2001 Essential 
hypertensi
ves 

198
0 

All cause 
mortality 

Pressure 
sensitive 
transducer 
(Complior) 

Direct cf 
distance 

Blacher  
 
(852) 

J Hum 
Hypertens 

2011 Geriatric 
men 

331 All cause 
mortality 

  

Maldona
do   
 
(853) 

J Hypertens 2011 Populatio
n based 

220
0 

CV events Pressure 
transducer / 
Complior 

Direct cf 
distance 

Blacher  
 
(231) 

Circulation 1999 Dialysis 
patients 

241 All cause 
mortality 

Doppler 
flow (aortic 
arch / 
carotid 
artery-
femoral 
artery) 

Direct cf 
distance 

Boutouyr
ie   
 
(132) 

Hypertensi
on  

2002 Essential 
hypertensi
ves 

104
5 

Coronary 
events 

Pressure 
sensitive 
transducer 
(Complior) 

Direct cf 
distance 

Terai  
(235) 

Hypertens 
Res 

2008 Essential 
hypertensi
ves 

676 Stroke, CV 
events 

Pressure 
transducer 
(FCP-4731) 

Direct cf 
distance 
minus 
sternal 
notch-
carotid 

Cruicksh
ank  
 
(155) 

Circulation 2002 Typ 2 
diabetics 
and 
glucose 

470 All cause 
mortality 

CW 
Doppler 
aortic arch / 
abdominal 

Sternoclavic
ular notch – 
distal probe 
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tested 
populatio
n sample 

aorta 

Shoji  
 
(854) 

J Am Soc 
Nephrol 

2001 Dialysis 
patients 

265 CV 
mortality 

PWV meter 
(PWV-200) 

1.3 x second 
intercostal 
space to 
femoral 
artery 

Guerin  
 
(213) 

Circulation 2001 Dialysis 
patients 

150 All cause 
mortality 

Doppler 
flow carotid 
artery – 
femoral 
artery 

Direct cf 
distance 
minus 
carotid  
suprasternal 
notch 

Inoue  
 
(855) 

Circulation 
Journal 

2009 Men 
undergoin
g medical 
check-up 

396
0 

All cause 
and CV 
mortality 

PWV meter 1.3 x second 
intercostal 
space to 
femoral 
artery 

Laurent  
 
(187) 

Stroke 2003 hypertensi
ves 

171
5 

Fatal 
stroke 

Pressure 
sensitive 
transducer 
(Complior) 

Direct 
distance 

Mattace 
Raso  
 
(188) 

Circulation  2006 populatio
n 

283
5 

CV disease Pressure 
sensitive 
transduce 
(Complior) 

Direct cf 
distance 

Meaume  
 
(186) 

ATVB 2001 Subjects > 
70 years 

141 CV 
mortality 

Pressure 
sensitive 
transducer 
(Complior) 

Direct cf 
distance 

Pannier  
 
(233) 

Hypertensi
on 

2005 End stage 
renal 
disease 

305 CV 
mortality 

Pressure 
sensitive 
transducer 
(Complior) 

Direct cf 
distance 

Verbeke  
 
(856) 

Clin J Am 
Soc 
Nephrol 

2011 Dialysis 
patients 

108
4 

CV events Applanatio
n tonometry 
(SphygmoC
or) 

Sternal 
notch-
femoral 
minus 
sternal 
notch-
carotid 

Szeto  
 
(857) 

Am J 
Nephrol 

2012 Peritoneal 
dialysis 
patients 

155 All cause 
mortality 

Pressure 
sensitive 
transducer 
(Complior) 

Direct cf 
distance 
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Shokawa  
 
(237) 

Circulation 
Journal 

2005 populatio
n 

492 All cause 
and CV 
mortality 

Transcutan
eous 
pressure 
sensors 
(MCG400) 

Direct cf 
distance 

Verwoert  
 
(858) 

J Human 
Hypertens 

2012 Elderly 
individual
s 

284
9 

CHD 
events 

Pressure 
sensitive 
transducer 
(Complior) 

Direct cf 
distance 

Mitchell  
 
(139) 

Circulation 2010 General 
populatio
n 

223
2 

CV events Carotid and 
femoral 
tonometry 

Suprasternal 
notch-
femoral 
minus 
suprasternal 
notch-
carotid 

Sutton-
Tyrell  
 
(157) 

Circulation 2005 Older 
adults 

248
8 

CV events Doppler 
flow right 
carotid – 
right 
femoral 
artery 

Direct cf 
distance 

Protoger
ou  
 
(440) 

Hypertens 
Res 

2011 Very old 
individual
s 

259 All cause 
mortality 

  

Willum 
Hansen  
 
(189) 

Circulation 2006 General 
populatio
n 

167
8 

CV events Piezoelectri
cal pressure 
transducers 
(Hellige 
GmbH) 

Direct cf 
distance 

Anderson  
 
(859) 

Hypertensi
on 

2009 General 
populatio
n 

174 Total 
mortality 

CW 
Doppler 
aortic arch / 
abdominal 
aorta 

Sternoclavic
ular notch – 
distal probe 

Wang  
 
(156) 

Hypertensi
on 

2010 General 
populatio
n 

127
2 

All cause 
and CV 
mortality 

Doppler 
flow carotid 
artery – 
femoral 
artery 

n.a. 

Zoungas  
 
(236) 

Am J 
Kidney Dis 

2007 Chronic 
kidney 
disease 
stages 4-5 

207 CV events Pressure 
transducer 
(Millar SPT 
– 301) 

Sternal 
notch-
femoral 
minus 
sternal 
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notch-
carotid 
artery 

Ilyas 
(860) 

QJM 2009 Suspected 
CAD 

284 CV 
hospitaliza
tion + 
mortality 

Applanatio
n tonometry 
(SphygmoC
or) 

n.a. 

Brachial-ankle PWV 
Ninomiya 
(861) 

J Hypertens 2013 General 
population 

291
6 

CV events PWV/ABI 
(Omron) 

Distance 
calculated 
from height 

Kato  
 
(150) 

Ther Apher 
Dial 

2012 Hemodial
ysis 
patients 

135 All cause 
mortality 
CV 
mortality 

CAVI 
VaSera VS 
1000 

Distance 
calculated 
from height 

Munakat
a (862) 

Hypertens 
Res 

2012 Essential 
hypertensi
on 

662 CV events PWV/ABI 
(Colin Co.) 

Distance 
calculated 
from height 

Yoshida 
* (863) 

Diabetes 
Care 

2012 Typ 2 
diabetes 

783 CV events Automated 
waveform 
analyzer 

 

Tanaka * 
(863) 

Atheroscler
osis 

2011 Hemodial
ysis 
patients 

445 CV events PWV/ABI 
(Colin Co.) 

Distance 
calculated 
from height 

Amemiya * 
(864) 

J Atheroscler 
Thromb 

2011 Hemodialysi
s patients 

186 All cause 
mortality 

PWV/ABI 
(Omron) 

Distance 
calculated 
from height 

Nakamur
a (865) 

Hypertens 
Res 

2010 Typ 2 
diabetes 
with CAD 

564 CV events PWV/ABI 
(Colin Co.) 

Distance 
calculated 
from height 

Turin 
(143) 

Hypertens 
Res 

2010 General 
populatio
n 

264
2 

All-cause 
mortality 

PWV/ABI 
(Omron) 

Distance 
calculated 
from height 

Miyano 
(866) 

Hypertens 
Res 

2010 Communi
ty-
dwelling 
older 
adults 

530 All-cause 
mortality, 
CV 
mortality 

PWV/ABI 
(Colin Co.) 

Distance 
calculated 
from height 

Meguro 
(867) 

Circ J 2009 Patients 
with heart 
failure 

72 HF 
readmissio
n + death 

PWV/ABI 
(Colin Co.) 

Distance 
calculated 
from height 

Morimot
o (868) 

Am J 
Nephrol 

2009 Hemodial
ysis 
patients 

199 CV 
mortality 

PWV/ABI 
(Omron) 

Distance 
calculated 
from height 

Matsuok
a (142) 

Biomed 
Pharmacoth
er 

2005 Elderly 
communit
y-

298 CV 
mortality 

PWV/ABI 
(Colin Co.) 

Distance 
calculated 
from height 
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* negative study 
Table 3: Outcome studies with cfPWV and baPWV. Search terms were: „aortic stiffness“, „pulse 
wave velocity“, „arterial stiffness“, „outcomes“, „mortality“, „cardiovascular events“, 
„myocardial infarction“, „stroke“, „heart failure“  
 
 
Table 6.4a and 6.4b: Comparative studies (6.4a) and outcome studies (6.4b) using local 
arterial stiffness measurements with ultrasound. 
 
  

dwelling 
people 

Kitahara 
(869) 

Am J 
Kidney Dis 

2005 Hemodial
ysis 
patients 

785 All cause 
mortality 

PWV/ABI 
(Colin Co.) 

Distance 
calculated 
from height 

Tomiyam
a (169) 

Circ J 2005 Patients 
with acute 
coronary 
syndrome
s 

215 CV events PWV/ABI 
(Colin Co.) 

Distance 
calculated 
from height 
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Table 6.4a  Comparison studies for local arterial stiffness devices 
 
Author Artery 

investigated 
n Index 

measured 
Device 
1 

Device 2 Results 

Palombo 
(870) 

Carotid 105 Carotid 
distension 
Beta-Index 

Esaote 
QAS 

Aloka E-track Distension sign 
lower, Beta-Index 
significantly 
higher with Esaote 

Bianchini 
(871) 

Carotid 21 Diameter 
Distension 

B-mode 
based 
device 

Radiofrequency 
based echo-
tracking 

Good agreement, 
B-mode based 
device less precise 

 
 
Table 6.4b Outcome studies for local arterial stiffness (Carotid stiffness) 
 
Author Population n measurement Outcome 
Van Dijk * (872) Impaired glucose 

tolerance 
140 Carotid artery 

compliance and 
distensibility / 
ultrasound 

Mortality 

Blacher (873) Dialysis patients 79 Carotid incremental 
modulus of 
elasticity / echo 
tracking 

All cause 
mortality 

Briet (203) Chronic kidney 
disease 

180 Carotid 
circumferential wall 
stress / wall 
tracking, Esaote  

Progression of 
CKD 

Dijk * (874) Manifest arterial 
disease 

2183 Carotid 
distensibility, Beta 
–Index, 
distensibility 
coefficient, 
Petersens modulus, 
Youngs modulus / 
Wall tracking 
(Scanner 200, Pie 
medical) 

CV events 

Yang * (875) General population 10407 Carotid artery : 
strain, compliance, 
distensibility, 
pressure-strain, 
Youngs elastic 
modulus / 
ultrasound 

CAD events* 
Stroke 
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Haluska * (876) Primary prevention 

patients 
719 Common carotid 

artery distensibility 
coefficient 

All cause 
mortality 
CV events + 
mortality  

Barenbrock 
(877) 

Patients after renal 
transplantation 

68 Common carotid 
artery distensibility 
coefficient / 
multigate Doppler 
system 

CV events 

Leone * (878) Elderly individuals 
> 65 yrs 

3337 Carotid distension, 
carotid 
distensibility 
index*, Youngs 
elastic modulus*, 
Beta stiffness 
index* / B-mode 
ultrasonography 
(Ultramark 9) 

Coronary events 

Mattace-Raso * 
(188) 

General population 2835 Carotid 
distensibility 
coefficient / Duplex 
scanner (ATL 
Ultramark IV) 

CV events 

Blacher * (879) Dialysis patients 110 Carotid artery: 
incremental elastic 
modulus, 
compliance*, 
distensibility* / 
ultrasound 

All cause 
mortality 

Störk *(880) Elderly men () 367 Carotid artery: 
distensibility*, 
Petersons modulus, 
Youngs modulus, 
Beta-Index / wall 
tracking (Pie 
medical) 

CV mortality 

* negative study  
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SECTION 7:  Pitfalls and Limitations of Arterial Stiffness 
Measurements 
 
Authors:    Carmel M McEniery, John C Cockcroft, Julio A Chirinos 
 
 

The assessment of arterial stiffness is associated with a number of confounding factors and other 

limitations. These factors require due consideration in order to minimise their impact and allow 

high quality data to be obtained. 

 

Physiological confounders 

Of the physiological variables affecting arterial stiffness, the most significant is the vessel 

distending pressure (mean pressure) (397;881-883). This is in contrast to pulse pressure, which 

provides an indirect index of large artery stiffness because it depends on large artery compliance, 

together with stroke volume and the influence of reflected pressure waves. Therefore, when 

assessing arterial stiffness, it is necessary to consider that the measured value will depend on the 

mean pressure. This is particularly important when assessing arterial stiffness in hypertensive 

patients, or investigating the effect of anti-hypertensive agents. The relationship between heart 

rate and arterial stiffness is less well defined, with acute studies showing positive associations 

(36;884;885), no association (35;886) or even inverse associations (887) between increased heart 

rate and various measures of arterial stiffness, including pulse wave velocity. These disparate 

results reflect that at least some of the studies may have been confounded by concomitant 

changes in mean pressure. Nevertheless, a recent study (39) demonstrated that although heart 

rate exerts a minimal influence on pulse wave velocity in the lower range of mean pressure 

values, an increase in heart rate results in a modest but significant increase in pulse wave 
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velocity at higher mean pressure values. Since blood pressure and heart rate vary considerably 

both within and between individuals, this must be taken into consideration when undertaking 

measurements of arterial stiffness. A suitable environment should be provided which has a stable 

temperature and is quiet. Participants should refrain from alcohol, vasoactive medications, or 

bouts of vigorous exercise, ideally for 12 hours.  In addition, large meals, caffeine-containing 

food and drinks and smoking should be suspended for at least 2-4 hours prior to the 

measurements. Participants should also be allowed to rest, in the supine position for at least 10-

15 minutes to ensure haemodynamic stability.  Menstruating women should be studied at a 

similar phase in their menstrual cycle. 

 

Other confounders 

Whenever tonometry or ultrasound systems are used for sequential recording of pressure or flow 

waves, using ECG gating, care has to be taken that cardiac rhythm is stable. In the presence of 

arrhythmias, measurements may be unreliable due to different intervals from ECG´s R-wave to 

the foot of the travelling wave. 

Perhaps the most important non-physiological confounder of pulse wave velocity measurements 

is the method used to calculate the wave travel distance. Carotid-femoral PWV is calculated as 

the distance travelled by the pressure wave divided by the time delay between the arrival of the 

pulse wave at the carotid and femoral sites (wave transit time). For measurement techniques 

other than MRI, the travel distance is typically estimated from surface measurements between 

the recording sites. These measurements should be as accurate as possible, since small errors in 

distance measurement may translate into much larger errors in the calculated pulse wave 

velocity. A tape measure is usually used, although calipers minimise the impact of body contours 
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and, therefore, are recommended. Different approaches are used to calculate wave travel 

distance, although the most common methods are the direct distance between the carotid and 

femoral sites (direct method) and the distance between the suprasternal notch and carotid site 

subtracted from the distance between the suprasternal notch and the femoral site (subtracted 

method). Each method results in different values of pulse wave velocity (840), making it difficult 

to apply threshold values, as proposed by recent guidelines (888). Although conversion 

algorithms between the two methods have been developed (889), these are likely to introduce 

further error. Therefore, the method of distance calculation should be clearly stated. Further data 

are required to validate the use of threshold values for pulse wave velocity. 

 

Limitations of arterial stiffness measurements 

In addition to physiological and other confounders of arterial stiffness measurements, there are a 

number of limitations associated with assessing arterial stiffness. Some of the techniques are 

highly operator-dependent and thus adequate training for the individuals making the recordings 

must be provided to ensure that high quality data are obtained. Therefore, a period of 

familiarization with the measurement techniques is suggested, after which the trainee should 

obtain high quality recordings in a minimum of 20 individuals prior to undertaking study or 

clinical measurements. In addition, the equipment required for these measurements is often 

expensive and lacking in portability, limiting the use of some techniques for measuring arterial 

stiffness to specialist research settings. This is especially the case for MRI- and ultrasound-based 

approaches, although a number of portable ultrasound systems are now available. Finally, 

although convincing outcome data are now available for pulse wave velocity, a more general 
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limitation of assessing arterial stiffness is the lack of therapeutic agents available to target the 

large arteries and promote arterial ‘de-stiffening’. Further research in his area is clearly required. 

Table 7.1 Recommendations for minimising confounding of arterial stiffness measurements 

 

Environmental Factors 

• Quiet room 

• Stable temperature (ideally temperature-controlled) 

Participant Factors 

• Refrain from alcohol and vasoactive medication (ideally for 12 hours) 

• Refrain from vigorous exercise (ideally for 12 hours) 

• Refrain from large meals, caffeine-containing food and beverages, and smoking (at 

least 2 hours but ideally 4 hours) 

• All women who still have menstrual periods should be studied at a similar phase in 

the menstrual cycle 

• Allow participant to rest in measurement position i.e. supine (at least 10 minutes but 

ideally 15 minutes) 

Measurement Factors 

• Allow an adequate period of training for observers (ideally high quality recordings 

obtained in a minimum of 20 individuals prior to undertaking study measurements) 

• Measure distances using calipers and state method of distance calculation used 

• Measurements should cover at least one respiratory cycle 

• Do not allow participant to speak or sleep during the measurement 

• Always take duplicate or triplicate readings 
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• If repeated/follow-up measurements are required, take at the same time of day (ideally 

with the same observer) 

 

SECTION 8:  Considerations in interpreting Arterial Stiffness 
data 
 
Authors:    Samer Najjar, Thomas Weber, Julio Chirinos 
 
 
Over the past decade, interest in arterial stiffness has rapidly grown. Whereas previously arterial 

stiffness was only assessed in a select number of research laboratories, the expanding interest in 

the field, the development of commercial devices and the inclusion of PWV in the European 

guidelines for hypertension led to a significant increase in the number of researchers and 

clinicians evaluating arterial stiffness and to a dramatic increase in the number of publications 

reporting arterial stiffness data. It is therefore critical to evaluate the factors that influence the 

measurement and values of arterial stiffness, as a necessary step for the appropriate interpretation 

of the data and for performing valid cross-study comparisons. 

 

Methodologic considerations 

Although carotid-femoral pulse wave velocity is recognized as the gold-standard for the non-

invasive assessment of arterial stiffness (135), often arterial stiffness is measured in alternative 

(or additional) vascular beds. For example, several noninvasive commercial devices assess 

brachial-ankle PWV. Compared to the carotid-femoral vascular bed, the brachial-ankle vascular 

bed encompasses additional arterial territories with different characteristics, different 

determinants of stiffness, and different influences of atherosclerosis. Conversely, invasive 

assessments of arterial stiffness and MRI-guided assessments of arterial stiffness often measure 

PWV across much shorter distances within the aorta. 

For a given vascular bed, the values of PWV may also differ based on the specific device that is 

used to measure PWV. For example, Millasseau et al (890) assessed PWV with 2 commercially 

available devices in the same individuals. They found that the 2 devices yielded different values 

of PWV within the same individual. Importantly, the difference was attributable to the algorithm 
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used by each device to derive the time of travel (foot-to-foot method with the SphygmoCor 

system vs. maximum slope method with the Complior system), such that the same waveforms 

analyzed by the 2 devices could result in differences in PWV values of 5-15%. 

Another important source of variation is the methodology used for the measurement of the 

distance travelled by the pulse wave. For example, some labs measure the distance between the 

carotid and femoral sampling sites. Others have argued that because the pulse wave is travelling 

concurrently up the carotid artery and across the aortic arch, the distance from the suprasternal 

notch to the carotid sampling site should be subtracted from the distance between the 

suprasternal notch to the femoral sampling site. Within the same individuals, using different 

methodologies for estimating the distance travelled by the pulse wave can lead to differences in 

PWV values of 30% (891). Using MRI as the gold standard for measurement of the distance 

travelled by the pulse wave, Huybrechts et al (839) found that that these methods respectively 

overestimate and underestimate the distance measured. Furthermore, the best estimate was 

obtained from a formula that used 80% of the distance from the carotid sampling site to the 

femoral sampling site.  A recent expert consensus document advised that this latter formula be 

adopted for use (835). Weber et al (185) found that non-invasive assessment of carotid-femoral 

PWV with the SphygmoCor device corresponded best with invasive assessment of PWV when 

the distance travelled was assessed by subtracting carotid-suprasternal notch distance from 

suprasternal notch-femoral distance. 

In summary, there are several methodologic considerations that need to be taken into 

consideration when interpreting PWV data. Factors such as the specific bed examined, the type 

of device used, the methodology used to assess the time of travel, and the formula used to 

estimate the distance travelled all affect the values of PWV measured, and therefore should be 

carefully evaluated when attempting to perform cross-study comparisons.   

Although this discussion has mostly focused on PWV, it is important to note that PWV is not the 

only index of arterial stiffness.  Admittedly, the appeal of PWV is in part related to the ease with 

which it is measured non-invasively, and thus its widespread use. However, there are additional 

indices of arterial stiffness that are also well validated, that have differing determinants, and 

therefore yield additional insights into the properties of the local or regional arterial trees being 

assessed. These indices are only modestly correlated with PWV, because they assess facets of 

arterial stiffness that contribute to, but are not the sole determinants of, the speed of pulse wave 
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propagation across the arterial tree. This underscores the importance of not viewing the various 

indices of arterial stiffness as interchangeable. 

 

Determinants of arterial stiffness 

Numerous factors have been shown to affect arteriosclerosis (43), which integrates the structural 

and functional changes in the vasculature that underlie arterial stiffening. However, the dominant 

determinants of arterial stiffness are unequivocally age and blood pressure (209).  The age-

associated increase in arterial stiffness is ubiquitously observed, albeit with varying degrees 

across populations (97), and within cohorts (309), reflecting differences in nutrition, physical 

activity, genetic determinants, smoking, cholesterol, blood glucose, and other factors known to 

affect arterial stiffness. The relationship between arterial stiffness and blood pressure is more 

complex and is now assumed to be bi-directional, as an increase in distending pressure leads to 

an increase in arterial stiffness, and conversely, an increase in stiffness can lead to an increase in 

systolic blood pressure. The relationship between arterial stiffness and blood pressure (and to a 

lesser extent age) can be further confounded by medications, particularly antihypertensive drugs, 

which affect the values of both arterial stiffness and blood pressure.  

Thus, interpretation of arterial stiffness data needs to take into account the clinical characteristics 

of the cohort or patient population studied, including age, prevalence of disease states (e.g. 

hypertension, diabetes, atherosclerosis), medications, lifestyle considerations (diet, physical 

activity), and perhaps genetic factors. 

 

Normative values of arterial stiffness 

As discussed elsewhere in this statement (Section 3), PWV has been shown to be a potent and 

independent predictor of adverse outcomes, including development of hypertension, 

cardiovascular events, renal insufficiency, cognitive decline and mortality. Thus, there is a 

growing recognition that measures of arterial stiffness may serve as important screening tools in 

clinical practice. The field of hypertension was the first to suggest bringing this test to the 

bedside, when it included PWV/stiffness in the 2007 ESH/ESC guidelines for the management of 

hypertension (892), where a fixed cut off of 12 m/sec was proposed, as indicative of subclinical 

organ damage. A recent expert consensus that advocated the use of the 0.8 x direct carotid-

femoral distance for measurement of distance travel suggested that the cutoff be shifted to 10 m/s 
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(derived by multiplying 12 by 0.8 then rounding up) (835). Nonetheless, it is recognized that 

using fixed thresholds has several limitations, including the fact that it does not take into account 

the 2 dominants determinants of PWV (age and BP). Clearly, a PWV value of 12.1 m/s carries 

different prognostic information in an 80 year old person vs. a 25 year old. This prompted an 

interest in studies attempting to establish reference values for various populations (363;893). 

The European Network for Non-Invasive Investigation of Large Arteries assembled the 

Reference Values for Arterial Stiffness’ Collaboration whose task was to generate reference and 

normative values for PWV. A large database was established that collected clinical and arterial 

stiffness data from 13 centers distributed across 8 European countries (840). The analysis 

focused on subjects who had a measurement of PWV, after excluding individuals with genetic 

causes of hypertension, secondary hypertension, overt cardiovascular disease, diabetes mellitus, 

therapy for hypertension, or therapy for dyslipidemia. The methodology for assessing transit time 

was first standardized by analyzing the collected waveforms using the intersecting tangent 

algorithm because of concern that the point of maximal upstroke tends to underestimate PWV 

(890). Next, the path length was also standardized, with adoption of the direct measurement of 

carotid sampling site to femoral sampling site, with the 0.8 scaling factor. The cohort included 

11,092 individuals, who yielded reference values of PWV stratified by age groups (<30, 30-39, 

40-49, 50-59, 60-69 and >70). In addition, from the subset of individuals who had optimal or 

normal blood pressure and no additional cardiovascular risk factors, normative values for PWV 

were also generated according to age groups (840). However, it should be emphasized that these 

normative and reference values are predominantly applicable to measurements performed using 

the aforementioned methodologies. 

 

In conclusion, we strongly support the call to standardize the methodologies for measuring 1) the 

pulse transit time, and 2) the distance travelled by the pulse waveform, where we support the use 

of 80% of the distance from the carotid sampling site to the femoral sampling site (185;835). 

These are necessary steps to 1) improve the interpretability of the data, 2) allow cross-study 

comparisons, and 3) generate population-level reference and normative values for PWV, which 

would be the ideal method for identifying outliers, i.e. individuals believed to be at increased risk 

for organ damage from excessive arterial stiffening.  
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SECTION 9:  Arterial Stiffness: Future Needs 
 
Authors:    Edward G. Lakatta, Ian B. Wilkinson, John R. Cockcroft 
 
 
 
Background:  
 
Progressive changes occur throughout life in the structure and function of central arteries in 

numerous species, and include diffuse intimal and medial thickening, and enhanced stiffening of 

central arteries (98). Viewing the reality of aging from the arterial wall begins with the 

realization that the lifetime risk for arterial diseases, e.g. atherosclerosis and hypertension, 

increases exponentially with advancing age (Fig. 9.1), and given the demographic imperative 

that the number of older persons has, and will continue to, dramatically increase, the incidence 

and prevalence of these diseases in Western society will be nearly unfathomable.  
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Figure 9.1 (Redrawn from Reference (894)) 

It is reasonable to hypothesize that specific mechanisms that underlie alterations in the arterial 

substrate that accompany “aging” may be intimately linked to the age-associated exponential 

increase in hypertension and atherosclerosis (100).  

Stiffening of the central arteries beyond the age of 40 is a characteristic, but likely pathological, 

feature of advancing age (97;895). There are complex interactions among arterial stiffness, 

arterial pressure and age. Systolic pressure increases with age, and it has been argued that the 

age-associated increase in arterial stiffness is a major factor underlying the blood pressure 

increase and marked increase in predominantly systolic hypertension that accompany advancing 

age (98;896;897). Contrasting perspectives, however, argue that increasing stiffness with 

advancing age reflects not only specific age-associated changes within the arterial wall, but also 

results from chronic arterial wall distention in response to chronically increased arterial BP.  

Understanding how aging, stiffness and BP interact over time is a complex conundrum: Do age 

changes, per se, within the arterial wall drive the age-associated increase in arterial stiffness, or 

does the increase in arterial stiffness with advancing age the age-associated increase in 

predominately systolic BP, or is the age-related increases in arterial stiffening driven by the 

increase in BP that occurs with aging? Aortic stiffness can be non-invasively indexed as the 

carotid-femoral pulse wave velocity (135;840).  Future blood pressure rise and hypertension, in 

fact, are predated by the initial measurement of PWV (305;309).  A recent report from the 

Framingham study demonstrated that while increased aortic stiffness, as assessed by cfPWV was 

associated with an increased risk of incident hypertension, initial blood pressure was not, 

however, associated with risk of progressive stiffening (305). In addition a population based 

study demonstrated that in the Tsimanes, a tribe of forager-horticulturalists blood pressure did 
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not rise with age. Although PWV was not measured, pulse pressure, as a surrogate for aortic 

stiffening also rose little with age (898).  

Beyond the BP-stiffness-age conundrum, results of epidemiologic perspectives that have 

delineated an independent risk of increased PWV for CV events, even when the impact of age, 

BP and other known risk factors are taken into account (133;139;157), suggest that prevention or 

reduction of aortic stiffening may carry substantial health benefits. However, the perquisite 

information required for such intervention studies is not presently available.  An understanding 

of the “natural history” of PWV and BP, i.e. the rate at which PWV and BP increase with age, 

however, is required for the design of future clinical trials aiming to intervene on PWV. Further, 

knowing whether the rate of change is constant, varies by age or gender is required to perform 

correct power analyses and to determine the age/gender composition of an interventional study 

panel. Repeated, simultaneous measures of PWV and BP over time in a large number of 

individuals of a general population of a broad age range, therefore, are crucial to a genuine 

causal understanding of how BP and PWV and their relationship evolves over time, and to 

develop therapeutic strategies to reduce the risk of increasing arterial stiffening that accompanies 

advancing age.  

Two potential interventions are currently available: BP-lowering drugs, which may act indirectly 

by reducing cyclical pressure load, and other interventions that act directly on the arterial wall to 

reduce stiffening.  One additional problem with any trial that targets BP per se will be how to 

interpret the results. Given that PWV is dependent on distending pressure, any antihypertensive 

would be expected to reduce PWV passively because of a fall in mean (distending) pressure. 

Thus, to know whether a particular antihypertensive has a true direct effect on stiffness would 

require the use of an appropriate control antihypertensive that will lower pressure to the same 
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degree. Such trials are likely to be difficult because matching pressure between the two arms 

exactly is challenging and rarely achievable. Alternatively, as some suggest certain agents may 

have direct (BP independent) effects on the wall, and novel agents that target elements within the 

wall, which regulate stiffness such as matrix proteins or cross-links. Clearly the choice will 

depend on the availability of agents suitable to take into clinical trials but also knowledge of how 

BP and PWV track each other during aging over the entire age range – a lack of a clear 

relationship might make one wary of a simple trial which targets BP per se.  

Specific future weapons required in the campaign to conquer arterial stiffening:  

1) Measurement of PWV  

a. Simple cuff based devices that are operator independent will be crucial for PWV 

measurements to be widely introduced into routine clinical practice. 

b. Increased use of noninvasive techniques such as MRI which will allow 

assessment of regional aortic stiffness. This is because existing techniques for 

measuring aortic pulse wave velocity assume that the aorta is homogeneous. 

However recent data from MRI studies show this assumption to be false and 

different sections of the aorta stiffen differentially with age (830). Furthermore, 

different pathophysiological conditions may effect different aortic regions (e.g. 

calcification appears to favor the abdominal aorta) and indeed the same may have 

differential effects. This also applies when assessing the effect of drug therapy as 

using overall aortic PWV may miss real but subtle changes in regional stiffness. 

c. Currently non cuff based systems for assessing 24hr ABPM such as the 

ContiPress ® system are being piloted  [http://cdn.medgadget.com/wp-

content/uploads/2012/02/Poster-Medtech-Bazar-2012.pdf  accessed April 21 
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2014]. Since this system records a brachial wave form it is possible that such 

systems may be adaptable in the future to assess both 24 hr central ABPM and 

also aoPWV 

2)      Longitudinal PWV measurements in a general population of a broad age range is required 

to design intervention studies with respect to power analyses and decisions regarding age and 

numbers of subjects to determine (a) the rate of change in PWV is over time and  (b) whether the 

rate of change is constant over the entire age span.  

3)       As with #2 directly above, the rate of change of BP overtime, to establish the extent to 

which trajectories of BP and PWV track each other and how this relationship changes over a 

lifetime. This is required to inform whether BP-lowering drugs are sufficient at all ages. 

4) Although a number of small studies have suggested that various lifestyle interventions may 

produce BP independent decreases in PWV, to date the best evidence available in terms of 

therapeutic intervention suggests that ACE inhibition may produce decreases in arterial stiffness 

beyond a blood pressure lowering effect (104;899). Much larger meta-analyses of individual 

patient data will be required in the future to be sure that decreases in PWV following therapy are 

truly, in part blood pressure independent. 

5)      Enhanced definition of events occurring at the vascular molecular/cell/matrix levels as 

arteries stiffen, in order to inform translation of these discoveries into the development and 

application of novel therapies.  
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Summary 

In summary, ‘‘aging’’-associated arterial changes and those associated with hypertension (and 

early atherosclerosis and diabetes) are fundamentally intertwined at the cellular and molecular 

levels. In humans, other well-known risk factors (e.g., excess food intake, altered dietary lipid 

and metabolism, smoking, and lack of exercise) likely interact with this arterial substrate that has 

been altered during aging, and that renders the aging artery a “fertile soil” that facilitates the 

initiation and progression of these arterial diseases. Some lifestyle and pharmacologic 

interventions have already proved to be effective in preventing or ameliorating hypertension 

associated with aging. Although a number of small studies have suggested that various life style 

interventions may produce BP independent decreases in aoPWV, to date the best evidence 

available in terms of therapeutic intervention suggests that ACE inhibition may produce 

decreases in arterial stiffness beyond a blood pressure lowering effect (104;899). Much larger 

meta-analyses of individual patient data will be required in the future to be sure that decreases in 

PWV following therapy are truly, in part blood pressure independent. The cellular/molecular 

proinflammatory mechanisms driven by Ang II and other growth factors (Figure 1.3) that 

underlie arterial aging are novel putative candidates to be targeted by interventions aimed at 

attenuating arterial aging, and thus possibly attenuating the major risk factor for hypertension 

and atherosclerosis.  
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Abbreviations used in this Statement (unit of measure, when applicable) 

ACE Angiotensin converting enzyme 
AGE Advanced Glycation End-product 
ARB Angiotensin Receptor Blocker 
AIx Augmentation Index – a ratio expressing the relationship of forward and backward 
traveling waves in the central aorta (unit-less, or sometimes expressed as %) 
Ang Angiotensin 
BP Blood Pressure 
baPWV Brachial-Ankle Pulse Wave Velocity (a measure of arterials stiffness; 
meters/second) 
cfPWV Carotid-Femoral Pulse Wave Velocity (a standard measure of arterial stiffness; 
meters/second) 
CFR Coronary artery Flow Reserve 
CKD Chronic Kidney Disease 
CV Cardiovascular 
CVD Cardiovascular Disease 
Δ Delta (i.e. change) 
D Diameter (mm [often]) 
DM Diabetes Mellitus 
DPTI Diastolic Pressure Time Index 
eGFR Estimated Glomerular Filtration Rate (typically from the MDRD equation; mL/min/1.73m2) 
E Young’s Elastic Modulus 
Ep Peterson’s Elastic Modulus 
Einc (incremental) Elastic Modulus (dynes/cm2) 
ECG Electrocardiogram 
Ea Arterial Elastance (a measure that relates end systolic pressure to LV stroke volume) 
ECM Extracellular Matrix 
EECP Enhanced External Counter-Pulsation 
eNOS Endothelial Nitric Oxide Synthase 
ESC European Society of Cardiology 
ESH European Society of Hypertension 
ESRD End Stage Renal Disease 
ET Endothelin 
Ew Wasted left ventricular workload energy 
fdPWV Femoral-Dorsalis Pedis Pulse Wave Velocity (a measure of arterials stiffness; 
meters/second) 
GFR Glomerular Filtration Rate (a measure of kidney function; mL/minute) 
GTF Generalized Transfer Function 
GWAS Genome Wide Association Studies 
h Wall Thickness (mm or μm) 
HF Heart Failure 
IDI Integrated Discrimination Improvement (statistics procedure) 
K Bulk Elastic Modulus 
LDL Low Density Lipoprotein 
LOE Level of Evidence 
LPK Lewis Polycystic Kidney (rodent model of arterial calcification) 
LV Left Ventricle 
LVH Left Ventricle Hypertrophy 
LVOT Left Ventricle Outflow Tract 
MAP Mean Arterial Pressure (mmHg) 
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MMP Matrix Metalloproteinase 
MRI Magnetic Resonance Imaging 
NIR Net Reclassification Index (ratio) 
NPRA Natriuretic Peptide Receptor Type A 
P Pressure (mmHg) 
PC-MRI Phase Contrast Magnetic Resonance Imaging 
PP Pulse Pressure (systolic minus diastolic pressure; mmHg) 
PWA Pulse Wave Analysis – use of an arterial waveform to interrogate vascular function (units 
vary) 
PWV Pulse Wave Velocity – the standard measure of arterial stiffness (meters/second) 
Q Perfusion (mL/min) or Flow velocity (cm/second) 
ρ Rho: Blood Density 
RM Reflected wave Magnitude (mmHg) 
SBP Systolic Blood Pressure 
SD Standard Deviation 
SPTI Systolic Pressure Time Index 
SVR Systemic Vascular Resistance (dynes-second/cm5) 
T Tension 
TD Travel Distance (millimeters or meters) 
TG Transglutaminase (enzyme) 
TT Transit Time (milliseconds, or seconds) 
VENC Velocity-Encoding Sensitivity (an MRI technique to measure flow velocity) 
VSMC Vascular Smooth Muscle Cell 
Zc Characteristic aortic impedance (also called Zo; measures aortic pressure-flow 
relationship; ((mmHg*sec)/mL) 

 
 



Gary F. Mitchell, Samer S. Najjar, Wilmer W. Nichols, Elaine M. Urbina and Thomas Weber
Chirinos, John R. Cockcroft, Kevin S. Heffernan, Edward G. Lakatta, Carmel M. McEniery, 
Raymond R. Townsend, Ian B. Wilkinson, Ernesto L. Schiffrin, Alberto P. Avolio, Julio A.

Stiffness: A Scientific Statement From the American Heart Association
Recommendations for Improving and Standardizing Vascular Research on Arterial

Print ISSN: 0194-911X. Online ISSN: 1524-4563 
Copyright © 2015 American Heart Association, Inc. All rights reserved.

is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231Hypertension 
doi: 10.1161/HYP.0000000000000033

2015;66:698-722; originally published online July 9, 2015;Hypertension. 

 http://hyper.ahajournals.org/content/66/3/698
World Wide Web at: 

The online version of this article, along with updated information and services, is located on the

 http://hyper.ahajournals.org/content/suppl/2015/08/12/HYP.0000000000000033.DC1.html
Data Supplement (unedited) at:

  
 http://hyper.ahajournals.org//subscriptions/

is online at: Hypertension  Information about subscribing to Subscriptions:
  

 http://www.lww.com/reprints
 Information about reprints can be found online at: Reprints:

  
document. Permissions and Rights Question and Answer this process is available in the

click Request Permissions in the middle column of the Web page under Services. Further information about
Office. Once the online version of the published article for which permission is being requested is located, 

 can be obtained via RightsLink, a service of the Copyright Clearance Center, not the EditorialHypertensionin
 Requests for permissions to reproduce figures, tables, or portions of articles originally publishedPermissions:

 at INSERM - DISC on September 8, 2015http://hyper.ahajournals.org/Downloaded from 

http://hyper.ahajournals.org/content/66/3/698
http://hyper.ahajournals.org/content/suppl/2015/08/12/HYP.0000000000000033.DC1.html
http://www.ahajournals.org/site/rights/
http://www.lww.com/reprints
http://hyper.ahajournals.org//subscriptions/
http://hyper.ahajournals.org/

	/content/hypertensionaha/supplemental/HYP.0000000000000033/DC1/1/Data_Supplement.pdf
	Measures of arterial wall stiffness
	Recent studies of arterial stiffness in youth published since the previous AHA statement on vascular assessment are summarized in Table 2 (635).  The most commonly employed techniques are carotid ultrasound, echocardiogram for aortic stiffness and ton...
	Global measures
	Hybrid indices
	Technical considerations in measurement in children
	Measures of pulse propagation
	Measures of arterial wall stiffness
	Hybrid indices

	Gaps in Knowledge:
	1. Lack of validation:
	2. Lack of sufficient normative data by age, body size, pubertal status, gender, and race:
	3. Lack of longitudinal data in healthy youth
	4. Data in high risk conditions
	5. Effect of intervention
	6. Lack of sufficient correlations to well established pediatric intermediate target organ endpoints.



